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Preface

Algorithms play an important role in our society, solving numerous mathematical
problems which appear in a broad spectrum of situations. To give a few examples,
think of planning taxi routes given a set of reservations (see Section 9.12); assigning
students to schools in a large urban school district, such as New York (see Section
9.4); or identifying a bottleneck in a transportation network (see Section 9.8). This
is why job interviews in the IT (Information Technology) industry test candidates for
their problem-solving skills. Many programming contests are organised by companies
such as Google, Facebook and Microsoft to spot gifted candidates and then send
them job offers. This book will help students to develop a culture of algorithms and
data structures, so that they know how to apply them properly when faced with new
mathematical problems.

Designing the right algorithm to solve a given problem is only half of the work;
to complete the job, the algorithm needs to be implemented efficiently. This is why
this book also emphasises implementation issues, and provides full source code for
most of the algorithms presented. We have chosen Python for these implementations.
What makes this language so enticing is that it allows a particularly clear and refined
expression, illustrating the essential steps of the algorithm, without obscuring things
behind burdensome notations describing data structures. Surprisingly, it is actually
possible to re-read code written several months ago and even understand it!

We have collected here 128 algorithmic problems, indexed by theme rather than
by technique. Many are classic, whereas certain are atypical. This work should
prove itself useful when preparing to solve the wide variety of problems posed in
programming contests such as ICPC, Google Code Jam, Facebook Hacker Cup,
Prologin, France-ioi, etc. We hope that it could serve as a basis for an advanced
course in programming and algorithms, where even certain candidates for the
‘agrégation de mathématiques option informatique’ (French competitive exam for
the highest teacher’s certification) will find a few original developments. The website
tryalgo.org, maintained by the authors, contains links to the code of this book, as
well as to selected problems at various online contests. This allows readers to verify
their freshly acquired skills.

This book would never have seen the light of day without the support of the
authors’ life partners. Danke, Hương. Merci, 智子. The authors would also like to
thank the students of the École polytechnique and the École normale supérieure
of Paris-Saclay, whose practice, often nocturnal, generated a major portion of the



x Preface

material of this text. Thanks to all those who proofread the manuscript, especially
René Adad, Evripidis Bampis, Binh-Minh Bui-Xuan, Stéphane Henriot, Lê Thành
Dũng Nguyễn, Alexandre Nolin and Antoine Pietri. Thanks to all those who improved
the programs on GitHub: Louis Abraham, Lilian Besson, Ryan Lahfa, Olivier Marty,
Samuel Tardieu and Xavier Carcelle. One of the authors would especially like to thank
his past teacher at the Lycée Thiers, Monsieur Yves Lemaire, for having introduced
him to the admirable gem of Section 2.5 on page 52.

We hope that the reader will pass many long hours tackling algorithmic problems
that at first glance appear insurmountable, and in the end feel the profound joy when
a solution, especially an elegant solution, suddenly becomes apparent.

Finally, we would like to thank Danièle and Greg Gibbons for their translation of
this work, even of this very phrase.

Attention, it’s all systems go!



1 Introduction

You, my young friend, are going to learn to program the algorithms of this book,
and then go on to win programming contests, sparkle during your job interviews,
and finally roll up your sleeves, get to work, and greatly improve the gross national
product!

Mistakenly, computer scientists are still often considered the magicians of modern
times. Computers have slowly crept into our businesses, our homes and our machines,
and have become important enablers in the functioning of our world. However, there
are many that use these devices without really mastering them, and hence, they do not
fully enjoy their benefits. Knowing how to program provides the ability to fully exploit
their potential to solve problems in an efficient manner. Algorithms and programming
techniques have become a necessary background for many professions. Their mastery
allows the development of creative and efficient computer-based solutions to problems
encountered every day.

This text presents a variety of algorithmic techniques to solve a number of classic
problems. It describes practical situations where these problems arise, and presents
simple implementations written in the programming language Python. Correctly
implementing an algorithm is not always easy: there are numerous traps to avoid and
techniques to apply to guarantee the announced running times. The examples in the
text are embellished with explanations of important implementation details which
must be respected.

For the last several decades, programming competitions have sprung up at every
level all over the world, in order to promote a broad culture of algorithms. The prob-
lems proposed in these contests are often variants of classic algorithmic problems,
presented as frustrating enigmas that will never let you give up until you solve them!

1.1 Programming Competitions

In a programming competition, the candidates must solve several problems in a
fixed time. The problems are often variants of classic problems, such as those
addressed in this book, dressed up with a short story. The inputs to the problems
are called instances. An instance can be, for example, the adjacency matrix of a graph
for a shortest path problem. In general, a small example of an instance is provided,
along with its solution. The source code of a solution can be uploaded to a server via
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a web interface, where it is compiled and tested against instances hidden from the
public. For some problems the code is called for each instance, whereas for others the
input begins with an integer indicating the number of instances occurring in the input.
In the latter case, the program must then loop over each instance, solve it and display
the results. A submission is accepted if it gives correct results in a limited time, on the
order of a few seconds.

Figure 1.1 The logo of the ICPC nicely shows the steps in the resolution of a problem.
A helium balloon is presented to the team for each problem solved.

To give here a list of all the programming competitions and training sites is quite
impossible, and such a list would quickly become obsolete. Nevertheless, we will
review some of the most important ones.

ICPC The oldest of these competitions was founded by the Association for
Computing Machinery in 1977 and supported by them up until 2017. This
contest, known as the ICPC, for International Collegiate Programming Contest,
is organised in the form of a tournament. The starting point is one of the regional
competitions, such as the South-West European Regional Contest (SWERC),
where the two best teams qualify for the worldwide final. The particularity of
this contest is that each three-person team has only a single computer at their
disposal. They have only 5 hours to solve a maximum number of problems
among the 10 proposed. The first ranking criterion is the number of submitted
solutions accepted (i.e. tested successfully against a set of unknown instances).
The next criterion is the sum over the submitted problems of the time between
the start of the contest and the moment of the accepted submission. For each
erroneous submission, a penalty of 20 minutes is added.

There are several competing theories on what the ideal composition of a
team is. In general, a good programmer and someone familiar with algorithms
is required, along with a specialist in different domains such as graph theory,
dynamic programming, etc. And, of course, the team members need to get along
together, even in stressful situations!

For the contest, each team can bring 25 pages of reference code printed in an
8-point font. They can also access the online documentation of the Java API and
the C++ standard library.

Google Code Jam In contrast with the ICPC contest, which is limited to students
up to a Master’s level, the Google Code Jam is open to everyone. This more
recent annual competition is for individual contestants. Each problem comes in
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general with a deck of small instances whose resolution wins a few points, and
a set of enormous instances for which it is truly important to find a solution
with the appropriate algorithmic complexity. The contestants are informed of
the acceptance of their solution for the large instances only at the end of the
contest. However, its true strong point is the possibility to access the solutions
submitted by all of the participants, which is extremely instructive.

The competition Facebook Hacker Cup is of a similar nature.
Prologin The French association Prologin organises each year a competition

targeted at students up to twenty years old. Their capability to solve algorithmic
problems is put to test in three stages: an online selection, then regional
competitions and concluding with a national final. The final is atypically an
endurance test of 36 hours, during which the participants are confronted with a
problem in Artificial Intelligence. Each candidate must program a “champion”
to play a game whose rules are defined by the organisers. At the end of the
day, the champions are thrown in the ring against each other in a tournament to
determine the final winner.

The website https://prologin.org includes complete archives of past
problems, with the ability to submit algorithms online to test the solutions.

France-IOI Each year, the organisation France-IOI prepares junior and senior
high school students for the International Olympiad in Informatics. Since
2011, they have organised the ‘Castor Informatique’ competition, addressed at
students from Grade 4 to Grade 12 (675,000 participants in 2018). Their website
http://france-ioi.org hosts a large number of algorithmic problems (more
than 1,000).

Numerous programming contests organised with the goal of selecting candidates
for job offers also exist. The web site www.topcoder.com, for example, also includes
tutorials on algorithms, often very well written.

For training, we particularly recommend https://codeforces.com, a well-
respected web site in the community of programming competitions, as it proposes
clear and well-prepared problems.

1.1.1 Training Sites

A number of websites propose problems taken from the annals of competitions, with
the possibility to test solutions as a training exercise. This is notably the case for
Google Code Jam and Prologin (in French). The collections of the annals of the ICPC
contests can be found in various locations.

Traditional online judges The following sites contain, among others, many
problems derived from the ICPC contests.

uva http://uva.onlinejudge.org
icpcarchive http://icpcarchive.ecs.baylor.edu, http://livearchive

.onlinejudge.org
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Chinese online judges Several training sites now exist in China. They tend to
have a purer and more refined interface than the traditional judges. Nevertheless,
sporadic failures have been observed.

poj http://poj.org
tju http://acm.tju.edu.cn (Shut down since 2017)
zju http://acm.zju.edu.cn

Modern online judges Sphere Online Judge http://spoj.com and Kattis
http://open.kattis.com have the advantage of accepting the submission
of solutions in a variety of languages, including Python.

spoj http://spoj.com
kattis http://open.kattis.com
zju http://acm.zju.edu.cn

Other sites

codechef http://codechef.com
codility http://codility.com
gcj http://code.google.com/codejam
prologin http://prologin.org
slpc http://cs.stanford.edu/group/acm

Throughout this text, problems are proposed at the end of each section in rela-
tion to the topic presented. They are accompanied with their identifiers to a judge
site; for example [spoj:CMPLS] refers to the problem ‘Complete the Sequence!’ at
the URL www.spoj.com/problems/CMPLS/. The site http://tryalgo.org contains
links to all of these problems. The reader thus has the possibility to put into practice
the algorithms described in this book, testing an implementation against an online
judge.

The languages used for programming competitions are principally C++ and Java.
The SPOJ judge also accepts Python, while the Google Code Jam contest accepts
many of the most common languages. To compensate for the differences in execution
speed due to the choice of language, the online judges generally adapt the time limit
to the language used. However, this adaptation is not always done carefully, and it is
sometimes difficult to have a solution in Python accepted, even if it is correctly written.
We hope that this situation will be improved in the years to come. Also, certain judges
work with an ancient version of Java, in which such useful classes as Scanner are
not available.

1.1.2 Responses of the Judges

When some code for a problem is submitted to an online judge, it is evaluated via a set
of private tests and a particularly succinct response is returned. The principal response
codes are the following:
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Accepted Your program provides the correct output in the allotted time. Congrat-
ulations!

Presentation Error Your program is almost accepted, but the output contains
extraneous or missing blanks or end-of-lines. This message occurs rarely.

Compilation Error The compilation of your program generates errors. Often,
clicking on this message will provide the nature of the error. Be sure to compare
the version of the compiler used by the judge with your own.

Wrong Answer Re-read the problem statement, a detail must have been over-
looked. Are you sure to have tested all the limit cases? Might you have left
debugging statements in your code?

Time Limit Exceeded You have probably not implemented the most efficient
algorithm for this problem, or perhaps have an infinite loop somewhere. Test
your loop invariants to ensure loop termination. Generate a large input instance
and test locally the performance of your code.

Runtime Error In general, this could be a division by zero, an access beyond the
limits of an array, or a pop() on an empty stack. However, other situations can
also generate this message, such as the use of assert in Java, which is often not
accepted.

The taciturn behaviour of the judges nevertheless allows certain information to be
gleaned from the instances. Here is a trick that was used during an ICPC / SWERC
contest. In a problem concerning graphs, the statement indicated that the input con-
sisted of connected graphs. One of the teams doubted this, and wrote a connectivity
test. In the positive case, the program entered into an infinite loop, while in the negative
case, it caused a division by zero. The error code generated by the judge (Time Limit
Exceeded ou Runtime Error) allowed the team to detect that certain graphs in the input
were not connected.

1.2 Python in a Few Words

The programming language Python was chosen for this book, for its readability and
ease of use. In September 2017, Python was identified by the website https://
stackoverflow.com as the programming language with the greatest growth in high-
income countries, in terms of the number of questions seen on the website, notably
thanks to the popularity of machine learning.1 Python is also the language retained
for such important projects as the formal calculation system SageMath, whose critical
portions are nonetheless implemented in more efficient languages such as C++ or C.

Here are a few details on this language. This chapter is a short introduction to
Python and does not claim to be exhaustive or very formal. For the neophyte reader
we recommend the site python.org, which contains a high-quality introduction as
well as exceptional documentation. A reader already familiar with Python can profit

1 https://stackoverflow.blog/2017/09/06/incredible-growth-python/
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enormously by studying the programs of David Eppstein, which are very elegant and
highly readable. Search for the keywords Eppstein PADS.

Python is an interpreted language. Variable types do not have to be declared, they
are simply inferred at the time of assignment. There are neither keywords begin/end
nor brackets to group instructions, for example in the blocks of a function or a loop.
The organisation in blocks is simply based on indentation! A typical error, difficult
to identify, is an erroneous indentation due to spaces used in some lines and tabs
in others.

Basic Data Types
In Python, essentially four basic data types exist: Booleans, integers, floating-point
numbers and character strings. In contrast with most other programming languages,
the integers are not limited to a fixed number of bits (typically 64), but use an arbi-
trary precision representation. The functions—more precisely the constructors: bool,
int, float, str—allow the conversion of an object to one of these basic types. For
example, to access the digits of a specific integer given its decimal representation,
it can be first transformed into a string, and then the characters of the string can be
accessed. However, in contrast with languages such as C, it is not possible to directly
modify a character of a string: strings are immutable. It is first necessary to convert to
a list representation of the characters; see below.

Data Structures
The principal complex data structures are dictionaries, sets, lists and n-tuples. These
structures are called containers, as they contain several objects in a structured manner.
Once again, there are functions dict, set, list and tuple that allow the conversion of
an object into one of these structures. For example, for a string s, the function list(s)
returns a list L composed of the characters of the string. We could then, for example,
replace certain elements of the list L and then recreate a string by concatenating the ele-
ments of L with the expression ‘’.join(L). Here, the empty string could be replaced
by a separator: for example, ‘-’.join([’A’,’B’,’C’]) returns the string “A-B-C”.

1.2.1 Manipulation of Lists, n-tuples, Dictionaries

Note that lists in Python are not linked lists of cells, each with a pointer to its successor
in the list, as is the case in many other languages. Instead, lists are arrays of elements
that can be accessed and modified using their index into the array. A list is written by
enumerating its elements between square brackets [ and ], with the elements separated
by commas.

Lists The indices of a list start with 0. The last element can also be accessed with
the index −1, the second last with −2 and so on. Here are some examples of
operations to extract elements or sublists of a list. This mechanism is known as
slicing, and is also available for strings.
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The following expressions have a complexity linear in the length of L, with
the exception of the first, which is in constant time.

L[i] the ith element of L
L[i:j] the list of elements with indices starting at i and up to

(but not including) j
L[:j] the first j elements
L[i:] all the elements from the ith onwards
L[-3:] the last three elements of L

L[i:j:k] elements from the ith up to (but not including) the jth,
taking only every kth element

L[::2] the elements of L with even indices
L[::-1] a reverse copy of L

The most important methods of a list for our usage are listed below. Their
complexity is expressed in terms of n, the length of the list L. A function has
constant amortised complexity if, for several successive calls to it, the average
complexity is constant, even if some of these calls take a time linear in n.

len(L) returns the number of elements of the list L O(1)
sorted(L) returns a sorted copy of the list L O(n log n)
L.sort() sorts L in place O(n log n)

L.count(c) the number of occurrences of c in L O(n)
c in L is the element c found in L? O(n)

L.append(c) append c to the end of L amortised O(1)
L.pop() extracts and returns the last element of L amortised O(1)

Thus a list has all the functionality of a stack, defined in Section 1.5.1 on
page 20.

n-tuple An n-tuple behaves much like a list, with a difference in the usage
of parentheses to describe it, as in (1, 2) or (left, ’X’, right). A 1-tuple,
composed of only one element, requires the usage of a comma, as in (2,).
A 0-tuple, empty, can be written as (), or as tuple(), no doubt more readable.
The main difference with lists is that n-tuples are immutable, just like strings.
This is why an n-tuple can serve as a key in a dictionary.

Dictionaries Dictionaries are used to associate objects with values, for example
the words of a text with their frequency. A dictionary is constructed as
comma-separated key:value pairs between curly brackets, such as {’the’: 4,
’bread’: 1, ’is’: 6}, where the keys and values are separated by a colon.
An empty dictionary is obtained with {}. A membership test of a key x in a
dictionary dic is written x in dic. Behind a dictionary there is a hash table,
hence the complexity of the expressions x in dic, dic[x], dic[x] = 42
is in practice constant time, even if the worst-case complexity is linear,
a case obtained in the improbable event of all keys having the same hash
value.

If the keys of a dictionary are all the integers between 0 and n− 1, the use of
a list is much more efficient.
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A loop in Python is written either with the keyword for or with while. The nota-
tion for the loop for is for x in S:, where the variable x successively takes on the
values of the container S, or of the keys of S in the case of a dictionary. In contrast,
while L: will loop as long as the list L is non-empty. Here, an implicit conversion of
a list to a Boolean is made, with the convention that only the empty list converts to
False.

At times, it is necessary to handle at the same time the values of a list along with
their positions (indices) within the list. This can be implemented as follows:

for index in range(len(L)):
value = L[index]
# ... handling of index and value

The function enumerate allows a more compact expression of this loop:

for index, value in enumerate(L):
# ... handling of index and value

For a dictionary, the following loop iterates simultaneously over the keys and
values:

for key, value in dic.items():
# ... handling of key and value

1.2.2 Specificities: List and Dictionary Comprehension, Iterators

List and Dictionary Comprehension
The language Python provides a syntax close to the notation used in mathematics for
certain objects. To describe the list of squares from 0 to n2, it is possible to use a list
comprehension:

>>> n = 5
>>> squared_numbers = [x ** 2 for x in range(n + 1)]
>>> squared_numbers
[0, 1, 4, 9, 16, 25]

which corresponds to the set {x2|x = 0, . . . ,n} in mathematics.
This is particularly useful to initialise a list of length n:

>>> t = [0 for _ in range(n)]
>>> t
[0, 0, 0, 0, 0]
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or to initialise counters for the letters in a string:

>>> my_string = "cowboy bebop"
>>> nb_occurrences = {letter: 0 for letter in my_string}
>>> nb_occurrences
{’c’: 0, ’o’: 0, ’w’: 0, ’b’: 0, ’y’: 0, ’ ’: 0, ’e’: 0, ’p’: 0}

The second line, a dictionary comprehension, is equivalent to the following:

nb_occurrences = {}
for letter in my_string:

nb_occurrences[letter] = 0

Ranges and Other Iterators
To loop over ranges of integers, the code for i in range(n): can be used to run over
the integers from 0 to n− 1. Several variants exist:

range(k, n) from k to n− 1
range(k, n, 2) from k to n− 1 two by two

range(n - 1, -1, -1) from n− 1 to 0 (−1 excluded) in decreasing order.

In early versions of Python, range returned a list. Nowadays, for efficiency, it
returns an object known as an iterator, which produces integers one by one, if and
when the for loop claims a value. Any function can serve as an iterator, as long
as it can produce elements at different moments of its execution using the keyword
yield. For example, the following function iterates over all pairs of elements of a
given list:.

def all_pairs(L):
n = len(L)
for i in range(n):

for j in range(i + 1, n):
yield (L[i], L[j])

1.2.3 Useful Modules and Packages

Modules
Certain Python objects must be imported from a module or a package with the
command import. A package is a collection of modules. Two methods can be used;
the second avoids potential naming collisions between the methods in different
modules:
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>>> from math import sqrt
>>> sqrt(4)
2
>>> import math
>>> math.sqrt(4)
2

math This module contains mathematical functions and constants such as log,
sqrt, pi, etc. Python operates on integers with arbitrary precision, thus there
is no limit on their size. As a consequence, there is no integer equivalent to
represent −∞ or +∞. For floating point numbers on the other hand, float(’-
inf’) and float(’inf’) can be used. Beginning with Python 3.5, math.inf (or
from math import inf) is equivalent to float(’inf’).

fractions This module exports the class Fraction, which allows computations
with fractions without the loss of precision of floating point calculations. For
example, if f is an instance of the class Fraction, then str(f) returns a string
similar to the form “3/2”, expressing f as an irreducible fraction.

bisect Provides binary (dichotomous) search functions on a sorted list.
heapq Provides functions to manipulate a list as a heap, thus allowing an element

to be added or the smallest element removed in time logarithmic in the size of
the heap; see Section 1.5.4 on page 22.

string This module provides, for example, the function ascii_lowercase, which
returns its argument converted to lowercase characters. Note that the strings
themselves already provide numerous useful methods, such as strip, which
removes whitespace from the beginning and end of a string and returns the
result, lower, which converts all the characters to lowercase, and especially
split, which detects the substrings separated by spaces (or by another separa-
tor passed as an argument). For example, “12/OCT/2018”.split(“/”) returns
[“12”, “OCT”, “2018”].

Packages
One of the strengths of Python is the existence of a large variety of code packages.
Some are part of the standard installation of the language, while others must be
imported with the shell command pip. They are indexed and documented at the web
site pypi.org. Here is a non-exhaustive list of very useful packages.

tryalgo All the code of the present book is available in a package called tryalgo
and can be imported in the following manner: pip install tryalgo.

>>> import tryalgo
>>> help(tryalgo) # for the list of modules
>>> help(tryalgo.arithm) # for a particular module

collections To simplify life, the class from collections import Counter can
be used. For an object c of this class, the expression c[x] will return 0 if x is not
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a key in c. Only modification of the value associated with x will create an entry
in c, such as, for example, when executing the instruction c[x] += 1. This is
thus slightly more practical than a dictionary, as is illustrated below.

>>> c = {} # dictionary
>>> c[’a’] += 1 # the key does not exist
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: ’a’
>>> c[’a’] = 1
>>> c[’a’] += 1 # now it does
>>> c
{’a’: 2}
>>> from collections import Counter
>>> c = Counter()
>>> c[’a’] += 1 # the key does not exist, so it is created
Counter({’a’: 1})
>>> c = Counter(’cowboy bebop’)
Counter({’o’: 3, ’b’: 3, ’c’: 1, ’w’: 1, ’y’: 1, ’ ’: 1, ’e’: 1, ’p’: 1})

The collections package also provides the class deque, for double-ended
queue, see Section 1.5.3 on page 21. With this structure, elements can be added
or removed either from the left (head) or from the right (tail) of the queue. This
helps implement Dijkstra’s algorithm in the case where the edges have only
weights 0 or 1, see Section 8.2 on page 126.

This package also provides the class defaultdict, which is a dictionary that
assigns default values to keys that are yet in the dictionary, hence a generalisa-
tion of the class Counter.

>>> from collections import defaultdict
>>> g = defaultdict(list)
>>> g[’paris’].append(’marseille’) # ’paris’ key is created on the fly
>>> g[’paris’].append(’lyon’)
>>> g
defaultdict(<class ’list’>, {’paris’: [’marseille’, ’lyon’]})
>>> g[’paris’] # behaves like a dict
[’marseille’, ’lyon’]

See also Section 1.3 on page 13 for an example of reading a graph given as
input.

numpy This package provides general tools for numerical calculations involving
manipulations of large matrices. For example, numpy.linalg.solve solves
a linear system, while numpy.fft.fft calculates a (fast) discrete Fourier
transform.

While writing the code of this book, we have followed the norm PEP8, which
provides precise recommendations on the usage of blanks, the choice of names for
variables, etc. We advise the readers to also follow these indications, using, for exam-
ple, the tool pycodestyle to validate the structure of their code.
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1.2.4 Interpreters Python, PyPy, and PyPy3

We have chosen to implement our algorithms in Python 3, which is already over
12 years old,2 while ensuring backwards compatibility with Python 2. The principal
changes affecting the code appearing in this text concern print and division between
integers. In Python 3, 5 / 2 is equal to 2.5, whereas it gives 2 in Python 2. The integer
division operator // gives the same result for both versions. As for print, in Python 2
it is a keyword, whereas in Python 3 it is a function, and hence requires the parameters
to be enclosed by parentheses.

The interpreter of reference is CPython, and its executable is just called python.
According to your installation, the interpreter of Python 3 could be called python or
python3. Another much more efficient interpreter is PyPy, whose executable is called
pypy in version 2 and pypy3 in version 3. It implements a subset of the Python
language, called RPython, with quite minimal restrictions, which essentially allow the
inference of the type of a variable by an analysis of the source code. The inconvenience
is that pypy is still under development and certain modules are not yet available. But
it can save your life during a contest with time limits!

1.2.5 Frequent Errors

Copy
An error often made by beginners in Python concerns the copying of lists. In the
following example, the list B is in fact just a reference to A. Thus a modification of
B[0] results also in a modification of A[0].

A = [1, 2, 3]
B = A # Beware! Both variables refer to the same object

For B to be a distinct copy of A, the following syntax should be used:

A = [1, 2, 3]
B = A[:] # B becomes a distinct copy of A

The notation [:] can be used to make a copy of a list. It is also possible to make a
copy of all but the first element, A[1 :], or all but the last element, A[:−1], or even
in reverse order A[::−1]. For example, the following code creates a matrix M , all of
whose rows are the same, and the modification of M[0][0] modifies the whole of the
first column of M .

M = [[0] * 10] * 10 # Do not write this!

2 Python 3.0 final was released on 3 December, 2008.
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A square matrix can be correctly initialised using one of the following expressions:

M1 = [[0] * 10 for _ in range(10)]
M2 = [[0 for j in range(10)] for i in range(10)]

The module numpy permits easy manipulations of matrices; however, we have cho-
sen not to profit from it in this text, in order to have generic code that is easy to translate
to Java or C++.

Ranges
Another typical error concerns the use of the function range. For example, the follow-
ing code processes the elements of a list A between the indices 0 and 9 inclusive, in
order.

for i in range(0, 10): # 0 included, 10 excluded
process(A[i])

To process the elements in descending order, it is not sufficient to just swap the
arguments. In fact, range(10, 0, -1)—the third argument indicates the step—is the
list of elements with indices 10 (included) to 0 (excluded). Thus the loop must be
written as:

for i in range(9, -1, -1): # 9 included, -1 excluded
process(A[i])

1.3 Input-Output

1.3.1 Read the Standard Input

For most problems posed by programming contests, the input data are read from
standard input, and the responses displayed on standard output. For example, if the
input file is called test.in, and your program is prog.py, the contents of the input
file can be directed to your program with the following command, launched from a
command window:

python prog.py < test.in

>_

In general, under Mac OS X, a command window can be obtained
by typing Command-Space Terminal, and under Windows, via
Start→ Run→ cmd.
If you are running Linux, the keyboard shortcut is generally Alt-
F2, but that you probably already knew. . .
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If you wish to save the output of your program to a file called test.out, type:

python prog.py < test.in > test.out

A little hint: if you want to display the output at the same time as it is being written
to a file test.out, use the following (the command tee is not present by default in
Windows):

python prog.py < test.in | tee test.out

The inputs can be read line by line via the command input(), which returns the
next input line in the form of a string, excluding the end-of-line characters.3 The
module sys contains a similar function stdin.readline(), which does not suppress
the end-of-line characters, but according to our experience has the advantage of being
four times as fast!

If the input line is meant to contain an integer, we can convert the string with the
function int (if it is a floating point number, then we must use float instead). In
the case of a line containing several integers separated by spaces, the string can first be
cut into different substrings using split(); these can then be converted into integers
with the method map. For example, in the case of two integers height and width to be
read on the same line, separated by a space, the following command suffices:

import sys

height, width = map(int, sys.stdin.readline().split())

If your program exhibits performance problems while reading the inputs, our expe-
rience shows that a factor of two can be gained by reading the whole of the inputs with
a single system call. The following code fragment assumes that the inputs are made
up of only integers, eventually on multiple lines. The parameter 0 in the function
os.read means that the read is from standard input, and the constant M must be an
upper bound on the size of the file. For example, if the file contains 107 integers,
each between 0 and 109, then as each integer is written with at most 10 characters
and there are at most 2 characters separating the integers (\n and \r), we can choose
M = 12 · 107.

3 According to the operating system, the end-of-line is indicated by the characters \r, \n, or both, but this
is not important when reading with input(). Note that in Python 2 the behaviour of input() is
different, so it is necessary to use the equivalent function raw_input().
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import os

instance = list(map(int, os.read(0, M).split()))

Example – Read a Graph on Input
If the inputs are given in the form:

3
paris tokyo 9471
paris new-york 5545
new-york singapore 15344

where 3 is the number of edges of a graph and each edge is represented by
<departure> <arrival> <distance>, then the following code, using defaultdict
to initialise the new keys in an empty dictionary, allows the construction of
the graph:

from collections import defaultdict

nb_edges = int(input())

g = defaultdict(dict)
for _ in range(nb_edges):

u, v, weight = input().split()
g[u][v] = int(weight)
# g[v][u] = int(weight) # For an undirected graph

Example—read three matrices A,B,C and test if AB = C

In this example, the inputs are in the following form: the first line contains a single
integer n. It is followed by 3n lines each containing n integers separated by spaces,
coding the values contained in three n × n matrices A,B,C, given row by row. The
goal is to test if the product A times B is equal to the matrix C. A direct approach
by matrix multiplication would have a complexity O(n3). However, a probabilistic
solution exists in O(n2), which consists in randomly choosing a vector x and testing
whether A(Bx) = Cx. This is the Freivalds test (1979). What is the probability that
the algorithm outputs equality even if AB �= C? Whenever the computations are
made modulo d , the probability of error is at most 1/d. This error probability can
be made arbitrarily small by repeating the test several times. The following code has
an error probability bounded above by 10−6.
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from random import randint
from sys import stdin

def readint():
return int(stdin.readline())

def readarray(typ):
return list(map(typ, stdin.readline().split()))

def readmatrix(n):
M = []
for _ in range(n):

row = readarray(int)
assert len(row) == n
M.append(row)

return M

def mult(M, v):
n = len(M)
return [sum(M[i][j] * v[j] for j in range(n)) for i in range(n)]

def freivalds(A, B, C):
n = len(A)
x = [randint(0, 1000000) for j in range(n)]
return mult(A, mult(B, x)) == mult(C, x)

if __name__ == "__main__":
n = readint()
A = readmatrix(n)
B = readmatrix(n)
C = readmatrix(n)
print(freivalds(A, B, C))

Note the test on the variable __name__. This test is evaluated as True if the file
containing this code is called directly, and as False if the file is included with the
import keyword.

Problem
Enormous Input Test [spoj:INTEST]

1.3.2 Output Format

The outputs of your program are displayed with the command print, which produces
a new line with the values of its arguments. The generation of end-of-line characters
can be suppressed by passing end=‘’ as an argument.
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To display numbers with fixed precision and length, there are at least two pos-
sibilities in Python. First of all, there is the operator % that works like the func-
tion printf in the language C. The syntax is s % a, where s is a format string, a
character string including typed display indicators beginning with %, and where a
consists of one or more arguments that will replace the display indicators in the format
string.

>>> i_test = 1
>>> answer = 1.2142
>>> print("Case #%d: %.2f gigawatts!!!" % (i_test, answer))
Case #1: 1.21 gigawatts!!!

The letter d after the % indicates that the first argument should be interpreted as an
integer and inserted in place of the %d in the format string. Similarly, the letter f is
used for floats and s for strings. A percentage can be displayed by indicating %% in
the format string. Between the character % and the letter indicating the type, further
numerical indications can be given. For example, %.2f indicates that up to two digits
should be displayed after the decimal point.

Another possibility is to use the method format of a string, which follows the
syntax of the language C#. This method provides more formatting possibilities and
is in general easier to manipulate.

>>> print("Case #{}: {:.2f} gigawatts!!!".format(i_test, answer))
Case #1: 1.21 gigawatts!!!

Finally, beginning with Python 3.6, f-strings, or formatted string literals, exist.

>>> print(f"Case #{testCase}: {answer:.2f} gigawatts!!!")
Case #1: 1.21 gigawatts!!!

In this case, the floating point precision itself can be a variable, and the formatting
is embedded with each argument.

>>> precision = 2
>>> print(f"Case #{testCase}: {answer:.{precision}f} gigawatts!!!")
Case #1: 1.21 gigawatts!!!

1.4 Complexity

To write an efficient program, it is first necessary to find an algorithm of appropriate
complexity. This complexity is expressed as a function of the size of the inputs. In
order to easily compare complexities, the notation of Landau symbols is used.
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Landau Symbols
The complexity of an algorithm is, for example, said to be O(n2) if the execution time
can be bounded above by a quadratic function in n, where n represents the size or some
parameter of the input. More precisely, for two functions f,g we denote f ∈ O(g)
if positive constants n0,c exist, such that for every n ≥ n0, f (n) ≤ c · g(n). By an
abuse of notation, we also write f = O(g). This notation allows us to ignore the
multiplicative and additive constants in a function f and brings out the magnitude and
form of the dependence on a parameter.

Similarly, if for constants n0,c > 0 we have f (n) ≥ c · g(n) for every n ≥ n0, then
we write f ∈ �(g). If f ∈ O(g) and f ∈ �(g), then we write f ∈ �(g), indicating
that f and g have the same order of magnitude of complexity. Finally, if f ∈ O(g)
but not g ∈ O(f ), then we write f ∈ o(g)

Complexity Classes
If the complexity of an algorithm is O(nc) for some constant c, it is said to be polyno-
mial in n. A problem for which a polynomial algorithm exists is said to be polynomial,
and the class of such problems bears the name P. Unhappily, not all problems are
polynomial, and numerous problems exist for which no polynomial algorithm has
been found to this day.

One such problem is k-SAT: Given n Boolean variables and m clauses each
containing k literals (a variable or its negation), is it possible to assign to each variable
a Boolean value in such a manner that each clause contains at least one literal with the
value True (SAT is the version of this problem without a restriction on the number of
variables in a clause)? The particularity of each of these problems is that a potential
solution (assignment to each of the variables) satisfying all the constraints can be
verified in polynomial time by evaluating all the clauses: they are in the class NP
(for Non-deterministic Polynomial). We can easily solve 1-SAT in polynomial time,
hence 1-SAT is in P. 2-SAT is also in P; this is the subject of Section 6.9 on page 110.
However, from 3-SAT onwards, the answer is not known. We only know that solving
3-SAT is at least as difficult as solving SAT.

It turns out that P ⊆ NP—intuitively, if we can construct a solution in polynomial
time, then we can also verify a solution in polynomial time. It is believed that
P �= NP, but this conjecture remains unproven to this day. In the meantime,
researchers have linked NP problems among themselves using reductions, which
transform in polynomial time an algorithm for a problem A into an algorithm for a
problem B. Hence, if A is in P, then B is also in P: A is ‘at least as difficult’ as B.

The problems that are at least as difficult as SAT constitute the class of problems
NP-hard, and among these we distinguish the NP-complete problems, which are
defined as those being at the same time NP-hard and in NP. Solve any one of these
in polynomial time and you will have solved them all, and will be gratified by eternal
recognition, accompanied by a million dollars.4 At present, to solve these problems
in an acceptable time, it is necessary to restrict them to instances with properties

4 www.claymath.org/millennium-problems/p-vs-np-problem
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that can aid the resolution (planarity of a graph, for example), permit the program
to answer correctly with only a constant probability or produce a solution only close
to an optimal solution.

Happily, most of the problems encountered in programming contests are
polynomial.

If these questions of complexity classes interest you, we recommend Christos H.
Papadimitriou’s book on computational complexity (2003).

For programming contests in particular, the programs must give a response within
a few seconds, which gives current processors the time to execute on the order of tens
or hundreds of millions of operations. The following table gives a rough idea of the
acceptable complexities for a response time of a second. These numbers are to be
taken with caution and, of course, depend on the language used,5 the machine that
will execute the code and the type of operation (integer or floating point calculations,
calls to mathematical functions, etc.).

size of input acceptable complexity

1000000 O(n)
100000 O(n log n)
1000 O(n2)

The reader is invited to conduct experiments with simple programs to test the time
necessary to execute n integer multiplications for different values of n. We insist here
on the fact that the constants lurking behind the Landau symbols can be very large,
and at times, in practice, an algorithm with greater asymptotic complexity may be
preferred. An example is the multiplication of two n× n matrices. The naive method
costs O(n3) operations, whereas a recursive procedure discovered by Strassen (1969)
costs only O(n2.81). However, the hidden multiplicative constant is so large that for the
size of matrices that you might need to manipulate, the naive method without doubt
will be more efficient.

In Python, adding an element to a list takes constant time, as does access to an
element with a given index. The creation of a sublist with L[i : j ] requires time
O(max{1,j − i}). Dictionaries are represented by hash tables, and the insertion of
a key-value pair can be done in constant time, see Section 1.5.2 on page 21. However,
this time constant is non-negligible, hence if the keys of the dictionary are the integers
from 0 to n− 1, it is preferable to use a list.

Amortised Complexity
For certain data structures, the notion of amortised time complexity is used. For exam-
ple, a list in Python is represented internally by an array, equipped with a variable
length storing the size. When a new element is added to the array with the method
append, it is stored in the array at the index indicated by the variable length, and then

5 Roughly consider Java twice as slow and Python four times as slow as C++.
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the variable length is incremented. If the capacity of the array is no longer sufficient,
a new array twice as large is allocated, and the contents of the original array are copied
over. Hence, for n successive calls to append on a list initially empty, the time of each
call is usually constant, and it is occasionally linear in the current size of the list.
However, the sum of the time of these calls is O(n), which, once spread out over each
of the calls, gives an amortised time O(1).

1.5 Abstract Types and Essential Data Structures

We will now tackle a theme that is at the heart of the notion of efficient programming:
the data structures underlying our programs to solve problems.

An abstract type is a description of the possible values that a set of objects can take
on, the operations that can be performed on these objects and the behaviour of these
operations. An abstract type can thus be seen as a specification.

A data structure is a concrete way to organise the data in order to treat them
efficiently, respecting the clauses in the specification. Thus, we can implement an
abstract type by one or more different data structures and determine the complexity in
time and memory of each operation. Thereby, based on the frequency of the operations
that need to be executed, we will prefer one or another of the implementations of an
abstract type to solve a given problem.

To program well, a mastery of the data structures offered by a language and its
associated standard library is essential. In this section, we review the most useful data
structures for programming competitions.

1.5.1 Stacks

A stack (see Figure 1.2) is an object that keeps track of a set of elements and pro-
vides the following operations: test if the stack is empty, add an element to the top
of the stack (push), access the element at the top of the stack and remove an ele-
ment (pop). Python lists can serve as stacks. An element is pushed with the method
append(element) and popped with the method pop().

deque

queue

stack

Figure 1.2 The three principal sequential access data structures provided by Python.

If a list is used as a Boolean, for example as the condition of an if or while
instruction, it takes on the value True if and only if it is non-empty. In fact, this is
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the case for all objects implementing the method __len__; for these, if x: behaves
exactly like if len(x) > 0:. All of these operations execute in constant time.

1.5.2 Dictionaries

A dictionary allows the association of keys to values, in the same manner that
an array associates indices to values. The internal workings are based on a hash
table, which uses a hash function to associate the elements with indices in an array,
and implements a mechanism of collision management in the case where different
elements are sent to the same index. In the best case, the read and write operations
on a dictionary execute in constant time, but in the worst case they execute in linear
time if it is necessary to run through a linear number of keys to handle the collisions.
In practice, this degenerate case arrives only rarely, and in this book, we generally
assume that accesses to dictionary entries take constant time. If the keys are of the
form 0,1, . . . ,n− 1, it is, of course, always preferable for performance reasons to use
a simple array.

Problems
Encryption [spoj:CENCRY]
Phone List [spoj:PHONELST]
A concrete simulation [spoj:ACS]

1.5.3 Queues

A queue is similar to a stack, with the difference that elements are added to the end
of the queue (enqueued) and are removed from the front of the queue (dequeued).
A queue is also known as a FIFO queue (first in, first out, like a waiting line), whereas
a stack is called LIFO (last in, first out, like a pile of plates).

In the Python standard library, there are two classes implementing a queue. The
first, Queue, is a synchronised implementation, meaning that several processes can
access it simultaneously. As the programs of this book do not exploit parallelism,
the use of this class is not recommended, as it entails a slowdown because of the
use of semaphores for the synchronisation. The second class is deque (for double-
ended queue). In addition to the methods append(element) and popleft(), which,
respectively, add to the end of the queue and remove from the head of the queue,
deque offers the methods appendleft(element) and pop(), which add to the head of
the queue and remove from the end of the queue. We can thus speak of a queue with
two ends. This more sophisticated structure will be found useful in Section 8.2 on
page 126, where it is used to find the shortest path in a graph the edges of which have
weights 0 or 1.

We recommend the use of deque—and in general, the use of the data structures
provided by the standard library of the language—but as an example we illustrate here
how to implement a queue using two stacks. One stack corresponds to the head of the
queue for extraction and the other corresponds to the tail for insertion. Once the head
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stack is empty, it is swapped with the tail stack (reversed). The operator __len__ uses
len(q) to recover the number of elements in the queue q, and then if q can be used
to test if q is non-empty, happily in constant time.

class OurQueue:
def __init__(self):

self.in_stack = [] # tail
self.out_stack = [] # head

def __len__(self):
return len(self.in_stack) + len(self.out_stack)

def push(self, obj):
self.in_stack.append(obj)

def pop(self):
if not self.out_stack: # head is empty

# Note that the in_stack is assigned to the out_stack
# in reverse order. This is because the in_stack stores
# elements from oldest to newest whereas the out_stack
# needs to pop elements from newest to oldest
self.out_stack = self.in_stack[::-1]
self.in_stack = []

return self.out_stack.pop()

1.5.4 Priority Queues and Heaps

A priority queue is an abstract type allowing elements to be added and an element
with minimal key to be removed. It turns out to be very useful, for example, in
sorting an array (heapsort), in the construction of a Huffman code (see Section 10.1
on page 172) and in the search for the shortest path between two nodes in a graph
(see Dijkstra’s algorithm, Section 8.3 on page 127). It is typically implemented with a
heap, which is a data structure in the form of a tree.

Perfect and Quasi-Perfect Binary Trees
We begin by examining a very specific type of data structure: the quasi-perfect binary
tree. For more information on these trees, see Chapter 10 on page 171, dedicated to
them.

A binary tree is either empty or is made up of a node with two children or subtrees,
left and right. The node at the top of the tree is the root, while the nodes with two
empty children, at the bottom of the tree, are the leaves. A binary tree is perfect if all
its leaves are at the same distance from the root. It is quasi-perfect if all its leaves are
on, at most, two levels, the second level from the bottom is completely full and all
the leaves on the bottom level are grouped to the left. Such a tree can conveniently be
represented by an array, see Figure 1.3. The element at index 0 of this array is ignored.
The root is found at index 1, and the two children of a node i are at 2i and 2i + 1.
Simple index manipulations allow us to ascend or descend in the tree.
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Figure 1.3 A quasi-perfect binary tree and its representation by an array.

Priority Queues and Heaps
A heap, also known as a tournament tree, is a tree verifying the heap property: each
node has a key smaller than each of its children, for a certain order relation. The root
of a heap is thus the element with the smallest key. A variant known as a max-heap
exists, wherein each node has a key greater that each of its children.

In general, we are interested in binary heaps, which are quasi-perfect binary tour-
nament trees. This data structure allows the extraction of the smallest element and
the insertion of a new element with a logarithmic cost, which is advantageous. The
objects in question can be from an arbitrary set of elements equipped with a total
order relation. A heap also allows an update of the priority of an element, which is a
useful operation for Dijkstra’s algorithm (see Section 8.1 on page 125) when a shorter
path has been discovered towards a summit.

In Python, heaps are implemented by the module heapq. This module provides a
function to transform an array A into a heap (heapify(A)), which results in an array
representing a quasi-perfect tree as described in the preceding section, except that
the element with index 0 does not remain empty and instead contains the root. The
module also allows the insertion of a new element (heappush(heap,element)) and
the extraction of the minimal element (heappop(heap)).

However, this module does not permit the value of an element in the heap to be
changed, an operation useful for Dijkstra’s algorithm to improve the time complexity.
We thus propose the following implementation, which is more complete.
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Implementation details
The structure contains an array heap, storing the heap itself, as well as a dictionary
rank, allowing the determination of the index of an element stored in the heap. The
principal operations are push and pop. A new element is inserted with push: it is added
as the last leaf in the heap, and then the heap is reorganised to respect the heap order.
The minimal element is extracted with pop: the root is replaced by the last leaf in the
heap, and then the heap is reorganised to respect the heap order, see Figure 1.4.

The operator __len__ returns the number of elements in the heap. The existence of
this operator permits the inner workings of Python to implicitly convert a heap to a
Boolean and to perform such conditional tests as, for example, while h, which loops
while the heap h is non-empty.

The average complexity of the operations on our heap is O(log n); however, the
worst-case complexity is O(n), due to the use of the dictionary (rank).
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Figure 1.4 The operation pop removes and returns the value 2 of the heap and replaces it by the
last leaf 15. Then the operation down performs a series of exchanges to place 15 in a position
respecting the heap order.
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class OurHeap:
def __init__(self, items):

self.heap = [None] # index 0 will be ignored
self.rank = {}
for x in items:

self.push(x)

def __len__(self):
return len(self.heap) - 1

def push(self, x):
assert x not in self.rank
i = len(self.heap)
self.heap.append(x) # add a new leaf
self.rank[x] = i
self.up(i) # maintain heap order

def pop(self):
root = self.heap[1]
del self.rank[root]
x = self.heap.pop() # remove last leaf
if self: # if heap is not empty

self.heap[1] = x # move the last leaf
self.rank[x] = 1 # to the root
self.down(1) # maintain heap order

return root

The reorganisation is done with the operations up(i) and down(i), which are called
whenever an element with index i is too small with respect to its parent (for up)
or too large for its children (for down). Hence, up effects a series of exchanges of
a node with its parents, climbing up the tree until the heap order is respected. The
action of down is similar, for an exchange between a node and its child with the
smallest value.

Finally, the method update permits the value of a heap element to be changed. It
then calls up or down to preserve the heap order. It is this method that requires the
introduction of the dictionary rank.
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def up(self, i):
x = self.heap[i]
while i > 1 and x < self.heap[i // 2]:

self.heap[i] = self.heap[i // 2]
self.rank[self.heap[i // 2]] = i
i //= 2

self.heap[i] = x # insertion index found
self.rank[x] = i

def down(self, i):
x = self.heap[i]
n = len(self.heap)
while True:

left = 2 * i # climb down the tree
right = left + 1
if (right < n and self.heap[right] < x and

self.heap[right] < self.heap[left]):
self.heap[i] = self.heap[right]
self.rank[self.heap[right]] = i # move right child up
i = right

elif left < n and self.heap[left] < x:
self.heap[i] = self.heap[left]
self.rank[self.heap[left]] = i # move left child up
i = left

else:
self.heap[i] = x # insertion index found
self.rank[x] = i
return

def update(self, old, new):
i = self.rank[old] # change value at index i
del self.rank[old]
self.heap[i] = new
self.rank[new] = i
if old < new: # maintain heap order

self.down(i)
else:

self.up(i)

1.5.5 Union-Find

Definition
Union-find is a data structure used to store a partition of a universe V and that allows
the following operations, also known as requests in the context of dynamic data
structures:



1.5 Abstract Types and Essential Data Structures 27

• find(v) returns a canonical element of the set containing v. To test if u and v are
in the same set, it suffices to compare find(u) with find(v).

• union(u,v) combines the set containing u with that containing v.

Application
Our principal application of this structure is to determine the connected components
of a graph, see Section 6.5 on page 94. Every addition of an edge will correspond to
a call to union, while find is used to test if two vertices are in the same component.
Union-find is also used in Kruskal’s algorithm to determine a minimal spanning tree
of a weighted graph, see Section 10.4 on page 179.

Data Structures with Quasi-Constant Time per Request
We organise the elements of a set in an oriented tree towards a canonical element, see
Figure 1.5. Each element v has a reference parent[v] towards an element higher in
the tree. The root v—the canonical element of the set—is indicated by a special value
in parent[v]: we can choose 0, −1, or v itself, as long as we are consistent. We also
store the size of the set in an array size[v], where v is the canonical element. There
are two ideas in this data structure:

1. When traversing an element on the way to the root, we take advantage of the
opportunity to compress the path, i.e. we link directly to the root that the elements
encountered.

2. During a union, we hang the tree of smaller rank beneath the root of the tree of
larger rank. The rank of a tree corresponds to the depth it would have if none of
the paths were compressed.
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Figure 1.5 On the left: The structure union-find for a graph with two components {7,8,12}
and {2,3,4,5,6,9,10,11}. On the right: after a call to find(10), all the vertices on the path
to~the root now point directly to the root 5. This accelerates future calls to find for these
vertices.
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This gives us:

class UnionFind:
def __init__(self, n):

self.up_bound = list(range(n))
self.rank = [0] * n

def find(self, x_index):
if self.up_bound[x_index] == x_index:

return x_index
self.up_bound[x_index] = self.find(self.up_bound[x_index])
return self.up_bound[x_index]

def union(self, x_index, y_index):
repr_x = self.find(x_index)
repr_y = self.find(y_index)
if repr_x == repr_y: # already in the same component

return False
if self.rank[repr_x] == self.rank[repr_y]:

self.rank[repr_x] += 1
self.up_bound[repr_y] = repr_x

elif self.rank[repr_x] > self.rank[repr_y]:
self.up_bound[repr_y] = repr_x

else:
self.up_bound[repr_x] = repr_y

return True

It can be proved that any arbitrary sequence of m operations union or find on a
universe of size n costs a time O((m+n)α(n)), where α is the inverse of Ackermann’s
function, which in practice can be considered as the constant 4.

Problem
Havannah [gcj:2013round3B]

1.6 Techniques

1.6.1 Comparison

In Python, a comparison between n-tuples is based on lexicographical order. This
allows us, for example, to find, at the same time, the largest value in an array along
with the corresponding index, taking the largest index in the case of equality.

max((tab[i], i) for i,tab_i in enumerate(tab))

The most common element of an array can be found by using a dictionary to
count the number of occurrences of each element, and then using the above technique
to select the element with the largest count, or the first element in lexicographical
order if there are several candidates with the maximal count. Our implementation
has a complexity of O(nk) on average, but O(n2k) in the worst case because of the
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use of a dictionary, where n is the number of words given and k is the maximal
length of a word.

def majority(L):
count = {}
for word in L:

if word in count:
count[word] += 1

else:
count[word] = 1

# Using min() like this gives the first word with
# maximal count "for free"
val_1st_max, arg_1st_max = min((-count[word], word) for word in count)
return arg_1st_max

1.6.2 Sorting

An array of n elements in Python can be sorted in time O(n log n). We distinguish two
kinds of sorts:

• a sort with the method sort() modifies the list in question (it is said to sort ‘in
place’) ;

• a sort with the function sorted() returns a sorted copy of the list in question.

Given a list L of n distinct integers, we would like to determine two integers
in L with minimal difference. This problem can be solved by sorting L, and then
running through L to select the pair with the smallest difference. Note the use of
minimum over a collection of pairs of integers, compared in lexicographical order.
Hence, valmin will contain the smallest distance between two successive elements
of L and argmin will contain the corresponding index.

def closest_values(L):
assert len(L) >= 2
L.sort()
valmin, argmin = min((L[i] - L[i - 1], i) for i in range(1, len(L)))
return L[argmin - 1], L[argmin]

Sorting n elements requires �(n log n) comparisons between the elements in the
worst case. To be convinced, consider an input of n distinct integers. An algorithm
must select one among n! possible orders. Each comparison returns one of two values
(greater or smaller) and thus divides the search space in two. Finally, it requires at
most 	log2(n! )
 comparisons to identify a particular order, giving the lower bound
�(log(n! )) = �(n log n).

Variants
In certain cases, an array of n integers can be sorted in time O(n), for example when
they are all found between 0 and cn for some constant c. In this case, we can simply
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scan the input and store the number of occurrences of each element in an array count
of size cn. We then scan count by increasing index, and write the values from 0 to cn

to the output array, repeating them as often as necessary. This technique is known as
counting sort; a similar variant is pigeonhole sort.

Problems
Spelling Lists [spoj:MIB]
Yodaness Level [spoj:YODANESS]

1.6.3 Sweep Line

Numerous problems in geometry can be solved with the sweep line technique, includ-
ing many problems concerning intervals, i.e. one-dimensional geometric objects. The
idea is to sweep over the different input elements from left to right and perform a
specific processing for each element encountered.

Example—Intersection of Intervals
Given n intervals [�i,ri) for i = 0, . . . ,n − 1, we wish to find a value x included
in a maximum number of intervals. Here is a solution in time O(n log n). We sort
the endpoints, and then sweep them from left to right with an imaginary pointer x.
A counter c keeps track of the number of intervals whose beginning has been seen,
but not yet the end, hence it counts the number of intervals containing x.

Note that the order of processing of the elements of B guarantees that the right
endpoints of the intervals are handled before the left endpoints of the intervals, which
is necessary when dealing with intervals that are half-open to the right.

def max_interval_intersec(S):
B = ([(left, +1) for left, right in S] +

[(right, -1) for left, right in S])
B.sort()
c = 0
best = (c, None)
for x, d in B:

c += d
if best[0] < c:

best = (c, x)
return best

Problem
Back to the future [prologin:demi2012]

1.6.4 Greedy Algorithms

We illustrate here an important algorithmic technique: informally, a greedy algo-
rithm produces a solution step by step, at each step making a choice to maximise a
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local criterion. A formal notion exists that is related to combinatorial structures known
as matroids, and it can be used to prove the optimality or the non-optimality of greedy
algorithms. We do not tackle this here, but refer to Kozen (1992) for a very good
introduction.

For some problems, an optimal solution can be produced step by step, making a
decision that is in a certain sense locally optimal. Such a proof is, in general, based on
an exchange argument, showing that any optimal solution can be transformed into the
solution produced by the algorithm without modifying the cost. The reader is invited
to systematically at least sketch such a proof, as intuition can often be misleading and
the problems that can be solved by a greedy algorithm are in fact quite rare.

An example is making change with coins, see Section 11.2 on page 184. Suppose
you work in a store, and dispose of an infinity of coins with a finite number of distinct
values. You must make change for a client for a specific sum and you wish to do it
with as few coins as possible. In most countries, the values of the coins are of the
form x · 10i with x ∈ {1,2,5} and i ∈ N, and in this case we can in a greedy manner
make change by repeatedly selecting the most valuable coin that is not larger than
the remaining sum to return. However, in general, this approach does not work, for
example with coins with values 1, 4 and 5, and with a total of 8 to return. The greedy
approach generates a solution with 4 coins, i.e. 5+ 1+ 1+ 1, whereas the optimal is
composed of only 2 coins: 4+ 4.

Example – Minimal Scalar Product
We introduce the technique with the aid of a simple example. Given two vectors x

and y of n non-negative integers, find a permutation π of {1, . . . ,n} such that the sum∑
i xiyπ(i) is minimal.

Application
Suppose there are n tasks to be assigned to n workers in a bijective manner, i.e. where
each task must be assigned to a different worker. Each task has a duration in hours and
each worker has a price per hour. The goal is to find the assignment that minimises the
total amount to be paid.

Algorithm in O(n log n)
Since applying the same permutation to both x and y preserves the optimal solution,
without loss of generality we can suppose that x is sorted in increasing order. We claim
that a solution exists that multiplies x0 by a maximal element yj . Fix a permutation π
with π(0) = i and π(k) = j for an index k and yi < yj . We observe that x0yi + xkyj

is greater or equal to x0yj + xkyi , which implies that without increasing the cost, π
can be transformed such that x0 is multiplied by yj . The observation is justified by the
following computation, which requires x0,xk to be non-negative:

x0 ≤ xk

x0(yj − yi) ≤ xk(yj − yi)
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x0yj − x0yi ≤ xkyj − xkyi

x0yj + xkyi ≤ x0yi + xkyj .

By repeating the argument on the vector x with x0 removed and on y with yj removed,
we find that the product is minimal when i �→ yπ(i) is decreasing.

def min_scalar_prod(x, y):
x1 = sorted(x) # make copies to preserve the input arguments
y1 = sorted(y)
return sum(x1[i] * y1[-i - 1] for i in range(len(x1)))

Problems
Minimum Scalar Product [gcj:2008round1A]
Minimal Coverage [timus:1303]

1.6.5 Dynamic Programming

Dynamic programming is one of the methods that must be part of your ‘Swiss army
knife’ as a programmer. The idea is to store a few precious bits of information so as
to not have to recompute them while solving a problem (a sort of a cache), and then to
reflect on how to astutely combine these bits. More formally, we decompose a problem
into subproblems, and we construct the optimal solution of the principal problem out
of the solutions to the subproblems.

Typically, these problems are defined over recursive structures. For example, in a
rooted tree, the descendants of the root are themselves roots of subtrees. Similarly, an
interval of indices in an array is the union of two shorter intervals. The reader is invited
to master the dynamic programming techniques presented in this text, as numerous
problems in programming competitions are variants of these classic problems.

A classic example is the computation of the nth Fibonacci number, defined by the
following recurrence:

F (0) = 0

F (1) = 1

F (i) = F (i − 1)+ F (i − 2).

This number gives, for example, the number of possibilities to climb an n-step
stairway by taking one or two steps at a time. A naive implementation of F by a
recursive function is extremely inefficient, since for the same parameter i, F (i) is
computed several times, see Figure 1.6.

def fibo_naive(n):
if n <= 1:

return n
return fibo_naive(n - 1) + fibo_naive(n - 2)
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Figure 1.6 On the left, the exhaustive exploration tree of the recursive computation of the
Fibonacci number F4. On the right, the acyclic oriented graph of the value dependencies of
dynamic programming, with many fewer nodes.

Try this function on a not-very-large value, n = 32, and you will see that the code
can already take more than a second, even on a powerful machine; the computation
time increases exponentially with n.

A solution by dynamic programming simply consists of storing in an array of size
n+1 the values of F (0) to F (n), and filling it in increasing order of the indices. Hence,
at the moment we compute F (i), the values F (i − 1) and F (i − 2) will already have
been computed; they are the last two values entered into the array.

def fibo_dp(n):
mem = [0, 1]
for i in range(2, n + 1):

mem.append(mem[-2] + mem[-1])
return mem[-1]

However, the above code uses n + 1 memory locations, whereas 2 are sufficient,
those corresponding to the last two Fibonacci numbers computed.

def fibo_dp_mem(n):
mem = [0, 1]
for i in range(2, n + 1):

mem[i % 2] = mem[0] + mem[1]
return mem[n % 2]

In this way, the memory complexity is reduced from linear in n (hence, it is
exponential in the input size log n ) to O(log n); hence, it is linear in the size of the
data. Indeed, the Fibonacci number n can be expressed using O(n) bits.

Now that you have a complete example of the principle of dynamic programming
in mind, we can reveal to you a trick using the decorator @lru_cache(maxsize=
None) present in the standard library functools. This decorator performs a mem-
oisation,6 i.e. it stores the successive calls of a function with their arguments in a

6 To be more precise, LRU stands for ‘Least Recently Used cache’, but indicating ‘maxsize=None’
deactivates the cache mechanism, since the cache is then non-bounded, unless for physical
considerations.
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dictionary, to avoid the combinatorial explosion of the calls. In other words, adding
@lru_cache(maxsize=None) transforms any old naive recursive implementation into
a clever example of dynamic programming. Isn’t life beautiful?

from functools import lru_cache

@lru_cache(maxsize=None)
def fibo_naive(n):

if n <= 1:
return n

return fibo_naive(n - 1) + fibo_naive(n - 2)

This code is as fast as the implementation using dynamic programming, thanks to
the memoisation provided by the decorator @lru_cache.

Problem
Fibonacci Sum [spoj:FIBOSUM]

1.6.6 Encoding of Sets by Integers

A technique to efficiently handle sets of integers between 0 and k for an integer k

on the order of 63 consists of encoding them as integers.7 More precisely, we use
the binary decomposition of an integer as the characteristic vector of the subset to be
represented. The encodings and operations are summarised in the following table:

value encoding explanation

{} 0 empty set

{i} 1 << i this notation represents 2i

{0,1, . . . ,n− 1} (1 << n)− 1 2n − 1 = 20 + 21 + · · · + 2n−1

A ∪ B A | B the operator | is the binary or

A ∩ B A & B the operator & is the binary and

(A\B) ∪ (B\A) A ˆ B the operator ˆ is the exclusive or

A ⊆ B A & B == A test of inclusion

i ∈ A (1 << i)& A test of membership

{min A} −A & A this expression equals 0 if A is empty

The justification of this last expression is shown in Figure 1.7. It is useful, for
example, to count in a loop the cardinality of a set. There is no equivalent expression
to obtain the maximum of a set.

To illustrate this encoding technique, we apply it to a classic problem.

7 The limit comes from the fact that integers in Python are, in general, coded in a machine word, which
today is usually 63 bits plus a sign bit, for a total of 64 bits.



1.6 Techniques 35

We wish to obtain the minimum of the set {3,5,6} encoded by an integer. This integer is
23 + 25 + 26 = 104.

64+32+8=104 01101000
complement of 104 10010111

-104 10011000
-104&104 = 8 00001000

The result is 23 encoding the singleton {3}.

Figure 1.7 Example of the extraction of the minimum of a set.

Example – Fair Partition into Three Portions
Definition
Given n integers x0, . . . ,xn−1, we wish to partition them into three sets with the same
sum.

Naive Algorithm in Time O(22n)
This algorithm uses exhaustive search. This consists of enumerating all the disjoint
subsets A,B ⊆ {0, . . . ,n − 1} and comparing the three values f (A),f (B),f (C)
with C = {0, . . . ,n − 1} \ A \ B and f (S) = ∑

i∈S xi . The implementation skips
explicit computation of the set C by verifying that f (A) = f (B) and 3f (A) =
f ({0, . . . ,n− 1}).

def three_partition(x):
f = [0] * (1 << len(x))
for i, _ in enumerate(x):

for S in range(1 << i):
f[S | (1 << i)] = f[S] + x[i]

for A in range(1 << len(x)):
for B in range(1 << len(x)):

if A & B == 0 and f[A] == f[B] and 3 * f[A] == f[-1]:
return (A, B, ((1 << len(x)) - 1) ^ A ^ B)

return None

For another utilisation of this technique, see the resolution for numbers in the TV
contest ‘Des Chiffres et des Lettres’ (1965), presented as ‘Countdown’ (1982) in the
UK, Section 15.6 on page 243.

1.6.7 Binary (Dichotomic) Search

Definition
Let f be a Boolean function—in {0,1}—with

f (0) ≤ . . . ≤ f (n− 1) = 1.

We wish to find the smallest integer k such that f (k) = 1.

Algorithm in Time O(log n)
The solution is sought in an interval [�,h], initially � = 0,h = n− 1. Then f is tested
in the middle of the interval at m = �(�+h)/2�. As a function of the result, the search
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space is reduced either to [�,m] or to [m + 1,h]. Note that because of the rounding
below in the computation of m, the second interval is never empty, nor the first for
that matter. The search terminates after 	log2(n)
 iterations, when the search interval
is reduced to a singleton.

def discrete_binary_search(tab, lo, hi):
while lo < hi:

mid = lo + (hi - lo) // 2
if tab[mid]:

hi = mid
else:

lo = mid + 1
return lo

Libraries
Binary search is provided in the standard module bisect, so that in many cases
you will not have to write it yourself. Consider the case of a sorted array tab of n

elements, where we want to find the insertion point of a new element x. The function
bisect_left(tab, x, 0, n) returns the first index i such that tab[i] ≥ x.

Continuous Domain
This technique can equally be applied when the domain of f is continuous and we
seek the smallest value x0 with f (x) = 1 for every x ≥ x0. The complexity will then
depend on the precision required for x0.

def continuous_binary_search(f, lo, hi, gap=1e-4):
while hi - lo > gap:

mid = (lo + hi) / 2.0
if f(mid):

hi = mid
else:

lo = mid
return lo

Search without a Known Upper Bound
Let f be a monotonic Boolean function with f (0) = 0 and the guarantee that an
integer n exists such that f (n) = 1. The smallest integer n0 with f (n0) = 1 can be
found in time O(log n0), even in the absence of an upper bound for n0. Initially, we
set n = 1, and then repeatedly double it while f (n) = 0. Once a value n is found with
f (n) = 1, we proceed with the standard binary search.

Ternary (Trichotomic) Search
Let f be a function on {0, . . . ,n − 1}, increasing and then decreasing, for which we
seek to find the maximal value. In this case, it makes sense to divide the search interval
[l,h] not in two but in three portions [l,a],[a+1,b],[b+1,h]. By comparing the values
of f (a) with f (b), we can decide which of the intervals [l,b],[a + 1,h] contains a
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maximal value. The number of iterations necessary is again logarithmic, on the order
of log3/2 n.

Search in an Interval [0,2k)
In the case of a search space where the size n is a power of 2, it is possible to slightly
improve the usual binary search, by using only bit manipulation operators, such as
binary shifts or exclusive or. We begin with the index of the last element of the array,
which in binary is written as a sequence of ones of length k. For each of the bits, we
test whether its replacement by 0 results in an index i such that tab[i] remains true.
In this case, we update the upper endpoint of the search interval.

def optimized_binary_search(tab, logsize):
hi = (1 << logsize) - 1
intervalsize = (1 << logsize) >> 1
while intervalsize > 0:

if tab[hi ^ intervalsize]:
hi ^= intervalsize

intervalsize >>= 1
return hi

Invert a Function
Let f be a continuous and strictly monotonic function. Thus there exists an inverse
function f−1, again monotonic. Imagine that f−1 is much easier to compute than f ,
in this case we can use it to compute f (x) for a given value of x. Indeed, it suffices to
find the smallest value y such that f−1(y) ≥ x.

Example—Filling Tasks
Suppose there are n tanks in the form of rectangular blocks at different heights, inter-
connected by a network of pipes. We pour into this system a volume V of liquid, and
wish to know the resulting height of the liquid in the tanks.

level = continuous_binary_search(lambda level: volume(level) >= V, 0, hi)

Problems
Fill the cisterns [spoj:CISTFILL]
Egg Drop [gcj:eggdrop]

1.7 Advice

Here is a bit of common sense advice to help you rapidly solve algorithmic problems
and produce a working program. Be organised and systematic. For this, it is important
to not be carried away with the desire to start hacking before all the details are clear.
It is easy to leap into the implementation of a method that can never work for a reason
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that would not have escaped you if you had taken a bit more time to ponder before
starting to pound on the keyboard.

When possible, in your program, separate the input of the instance from the com-
putation of the solution. Be nice to yourself and systematically add to the comments
the name of the problem, if possible with its URL, and specify the complexity of
your algorithm. You will appreciate this effort when you revisit your code at a later
date. Above all, stay coherent in your code and reuse the terms given in the problem
statement to highlight the correspondence. There is little worse than having to debug
a program whose variable names are not meaningful.

Carefully Read the Problem Statement
What complexity is acceptable? Pay attention to the limits stated for the

instances. Analyse your algorithm before implementing it.
Understand the example given. Carefully read the typical example furnished

with the problem statement. If the input describes a graph, draw its picture. Once
you have an idea of a solution, of course verify it on the example or examples
provided.

What guarantees on the inputs? Do not deduce guarantees from the examples.
Do not suppose anything. If it is not stated that the graph is not empty, there will
probably be an instance with an empty graph. If it is not said that a character
string does not contain a space, there will probably be an instance with such a
string. Etc, etc.

What type of number should you choose? Integer or floating point? Can the
numbers be negative? If you are coding in C++ or Java, determine a bound on
the largest intermediate value in your calculations, to decide between the use of
16-, 32- or 64-bit integers.

Which problem is easy? For a competition involving several problems, start
with a rapid overview to determine the type of each problem (greedy algorithm,
implicit graph, dynamic programming, etc.) and estimate its level of difficulty.
Concentrate then on the easiest problems in priority. During a team competition,
distribute the problems according to the domains of expertise of each partici-
pant. Monitor the progress of the other teams to identify the problems that are
easy to solve.

Plan Your Work
Understand the example. Draw pictures. Discover the links with known prob-

lems. How can you exploit the particularities of the instances?
When possible, use existing modules. Master the classics: binary search, sort-

ing, dictionaries.
Use the same variable names as in the problem statement. Preferably, use

names that are short but meaningful. Avoid variables such as O or l, which
are too easily confused with numbers.

Initialise your variables. Make sure that the variables are reinitialised before the
processing of each new instance. Treading on the remnants of the preceding
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iteration is a classic error. Take, for example, a program solving a graph problem
whose input consists of the number of instances, followed by each instance,
beginning with two integers: the number of vertices n and the number of edges
m. These are followed by two arrays of integers A,B of size m, encoding the
endpoints of the edges for each instance. Imagine that the program encodes
the graph in the form of an adjacency list G and for every i = 0, . . . ,m − 1,
adds B[i] to G[A[i]] and A[i] to G[B[i]]. If the lists are not emptied before
the beginning of each input of an instance, the edges accumulate to form a
superposition of all the graphs.

Debug
Make all your mistakes now to have the proper reflexes later.
Generate test sets for the limit cases (Wrong Answer) and for large instances

(Time Limit Exceeded or Runtime Error).
Explain the algorithm to a team-mate and add appropriate comments to the pro-

gram. You must be capable of explaining each and every line.
Simplify your implementation. Regroup all similar bits of code. Never go wild

with copy-and-paste (note from the translators—one of the most observed
sources of buggy programs from novice programmers!).

Take a step back by passing to another problem, and come back later for a fresh
look.

Compare the environment of your local machine with that of the server where
your code will be tested.

1.8 A Problem: ‘Frosting on the Cake’

See [icpcarchive:8154].
Iskander the Baker is decorating a huge cake by covering the rectangular sur-

face of the cake with frosting. For this purpose, he mixes frosting sugar with lemon
juice and beetle juice, in order to produce three kinds of frosting: yellow, pink and
white. These colours are identified by the numbers 0 for yellow, 1 for pink and 2
for white.

To obtain a nice pattern, he partitions the cake surface into vertical stripes of width
A1,A2, . . . ,An centimeters, and horizontal stripes of height B1,B2, . . . ,Bn centime-
ters, for some positive integer n. These stripes split the cake surface into n × n

rectangles. The intersection of vertical stripe i and horizontal stripe j has colour
number (i + j ) mod 3 for all 1 ≤ i,j ≤ n, see Figure 1.8. To prepare the frosting,
Iskander wants to know the total surface in square centimeters to be coloured for each
of the three colours, and asks for your help.

Input

The input consists of the following integers:
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• on the first line: the integer n,

• on the second line: the values of A1, . . . ,An, n integers separated by single spaces,

• on the third line: the values of B1, . . . ,Bn, n integers separated by single spaces.

Limits

The input satisfies 3 ≤ n ≤ 100 000 and 1 ≤ A1, . . . ,An,B1, . . . ,Bn ≤ 10 000.

Figure 1.8 An instance of the problem ‘Frosting on the Cake’

Output

The output should consist of three integers separated by single spaces, representing
the total area for each colour 0, 1 and 2.

Solution

When you see the upper bound on n, you want to find a solution that runs in time O(n)
or possibly O(n log n). This rules out the naive solution which loops over all n2 grid
cells and accumulates their areas in variables corresponding to each colour. But with
a little thought about the problem, we can make the following observation. Permuting
columns or rows preserves the total area of each colour. Hence, we can reduce to the
n = 3 case, by simply summing the values of each colour class A3k , A3k+1 and A3k+2.
Then the answer per colour class is just the sum of the areas of three rectangles.

Hence, a solution could be as short as the following one. The tricky part relies in
not mixing up the colours.
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def read_ints(): return [int(x) for x in input().split()]

def cat(l): return tuple(sum(l[n::3]) for n in [1, 2, 0])

input() # n
A = cat(read_ints())
B = cat(read_ints())
print("{} {} {}".format(B[2] * A[0] + B[0] * A[2] + B[1] * A[1],

B[2] * A[1] + B[0] * A[0] + B[1] * A[2],
B[2] * A[2] + B[0] * A[1] + B[1] * A[0]))
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The resolution of problems involving character strings (or simply strings) rapidly
became an important domain in the study of algorithms. These problems occur, of
course, in text processing, such as spell checking and the search for factors (sub-
strings) or for more general patterns. With the development of bioinformatics, new
problems arose in the alignment of DNA chains. This chapter presents a selection of
string-processing algorithms that we consider important.

A character string could be represented internally by a list of symbols, but, in
general, we use the Python native type str, which behaves essentially like a list. The
characters can be encoded with two bytes for a Unicode encoding, but are usually
encoded with only one byte, using the ASCII encoding: each integer between 0 and
127 corresponds to a distinct character, and the codes are organised in such a way that
the successive symbols ‘0’ to ‘9’, ‘a’ to ‘z’ and ‘A’ to ‘Z’ are consecutive. Thereby, if
a string s contains only capitals, we can recover the rank of the ith letter by computing
ord(s[i])-ord(’A’). Conversely, the j th capital letter of the alphabet numbered
from~0—is obtained with chr(j+ord(’A’)).

When we speak of a factor (or substring) of a string, we require the characters to
be consecutive, in contrast with the more general notion of a subsequence.

2.1 Anagrams

Definition
A word w is an anagram of a word v if a permutation of the letters transforming w
into v exists. Given a set of n words of length at most k, we would like to detect all
possible anagrams.

input: below the car is a rat drinking cider and bending its elbow while this thing
is an arc that can act like a cat which cried during the night caused by pain in its
bowel1

output: {bowel below elbow}, {arc car}, {night thing}, {cried cider}, {act cat}

1 Believe it or not: the authors did not consume cider in order to produce this sample input.
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Complexity
The proposed algorithm solves this problem in time O(nk log k) on average, and in
O(n2k log k) in the worst case, due to the use of a dictionary.

Algorithm
The idea is to compute a signature for each word, so that two words are anagrams of
each other if and only if they have the same signature. This signature is simply a new
string made up of the same letters sorted in lexicographical order.

The data structure used is a dictionary associating with each signature the list of
words with this signature.

def anagrams(S): # S is a set of strings
d = {} # maps s to list of words with signature s
for word in S: # group words according to the signature

s = ’’.join(sorted(word)) # calculate the signature
if s in d:

d[s].append(word) # append a word to an existing signature
else:

d[s] = [word] # add a new signature and its first word
# -- extract anagrams, ingoring anagram groups of size 1
return [d[s] for s in d if len(d[s]) > 1]

Problem
Anagram verifier [spoj:ANGRAM]

2.2 T9—Text on 9 Keys

input: 2665687
output: bonjour

Application
Mobile telephones with keys offer an interesting input mode, sometimes called T9.
The 26 letters of the alphabet are distributed over the keys 2 to 9, as in Figure 2.1.
To input a word, it suffices to input the corresponding sequence of digits. However, as
several words could begin with the same digits, a dictionary must be used to propose
the most probable word. At any moment, the telephone displays the prefix of the most
probable word corresponding to the sequence of digits entered.
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Definition
The first part of the problem instance is a dictionary, composed of pairs (m,w) where
m is a word over the alphabet of 26 lower-case letters, and w is a weight of the
importance of the word. The second part is a series of sequences of digits from 2
to 9. For each sequence s, the word in the dictionary of maximal weight is to be
displayed. A word m corresponds to s if s is a prefix of the sequence t obtained from
m by replacing each letter by the corresponding digit, according to the correspondence
table given in Figure 2.1. For example, ‘bonjour’ corresponds to 26, but also to 266
or 2665687.

WXYZ

ABC

2

7 8 9

0

1 3

4 5 6

* #

DEF

GHI JKL MNO

PQRS TUV

Figure 2.1 The keys of a mobile phone.

Algorithm
The complexity is O(nk) for the initialisation of the dictionary, and O(k) for each
request, where n is the number of words in the dictionary and k an upper bound on the
length of the words.

In a first phase, we compute for each prefix p of a word in the dictionary the
total weight of all the words with prefix p. This weight is stored in a dictionary
total_weight. In a second phase, we store in a dictionary prop[seq] the prefix to
be proposed for a given sequence seq. A scan over the keys in total_weight allows
the determination of the prefix with greatest weight.

A principal ingredient is the function code_word, which for a given word returns
the corresponding sequence of digits.

To improve readability, the implementation below is in O(nk2).
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t9 = "22233344455566677778889999"
# abcdefghijklmnopqrstuvwxyz mapping on the phone

def letter_to_digit(x):
assert ’a’ <= x <= ’z’
return t9[ord(x) - ord(’a’)]

def code_word(word):
return ’’.join(map(letter_to_digit, word))

def predictive_text(dic):
# total_weight[p] = total weight of words having prefix p
total_weight = {}
for word, weight in dic:

prefix = ""
for x in word:

prefix += x
if prefix in total_weight:

total_weight[prefix] += weight
else:

total_weight[prefix] = weight
# prop[s] = prefix to display for s
prop = {}
for prefix in total_weight:

code = code_word(prefix)
if (code not in prop

or total_weight[prop[code]] < total_weight[prefix]):
prop[code] = prefix

return prop

def propose(prop, seq):
if seq in prop:

return prop[seq]
return None

Problem
T9 [poj:1451]
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2.3 Spell Checking with a Lexicographic Tree

Application
How should the words of a dictionary be stored in order to implement a spell checker?
For a given word, we would like to quickly find a dictionary word close to it in the
sense of the Levenshtein edit distance, see Section 3.2 on page 63. If we store the
dictionary words in a hash table, then we lose all proximity information between
words. It is better to store them in a lexicographic tree, also known as a prefix tree
or a trie (pronounced like ‘try’).

Definition
A trie is a tree that stores a set of words. The edges of a node towards its children are
labelled by distinct letters. Each word in the dictionary then corresponds to a path from
the root to a node in the tree. The nodes are marked to distinguish those corresponding
to words in the dictionary from those that are only strict prefixes of such words, see
Figure 2.2.

Spell Checking
With such a structure, it is easy to find a dictionary word that is at a distance dist from
a given word, for the Levenshtein edit distance defined in Section 3.2 on page 63. It
suffices to simulate the edit operations at each node, and invoke recursive calls to the
search with the parameter dist - 1.

a

s

p

o

r

t e

r

e

s t

a

s

p

or

t e

re

s t

Figure 2.2 A lexicographic tree for the words as, port, pore, pré, près, prêt (but without the
accents). In this figure, the label of each edge is indicated in the node of the child. The circles
with solid boundaries mark the nodes that correspond to words in the dictionary. On the right,
we show a Patricia trie for the same dictionary.
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from string import ascii_letters # in Python 2 one would import letters

class TrieNode:
def __init__(self): # each node will have

self.is_word = False # 52 children -
self.s = {c: None for c in ascii_letters} # most will remain empty

def add(T, w, i=0): # Add a word to the trie
if T is None:

T = TrieNode()
if i == len(w):

T.is_word = True
else:

T.s[w[i]] = add(T.s[w[i]], w, i + 1)
return T

def Trie(S): # Build the trie for the words in the dictionary S
T = None
for w in S:

T = add(T, w)
return T

def spell_check(T, w): # Spell check a word against the trie
assert T is not None
dist = 0
while True:

u = search(T, dist, w)
if u is not None: # Match at distance dist

return u
dist += 1 # No match - try increasing the distance

def search(T, dist, w, i=0):
if i == len(w):

if T is not None and T.is_word and dist == 0:
return ""

else:
return None

if T is None:
return None

f = search(T.s[w[i]], dist, w, i + 1) # matching
if f is not None:

return w[i] + f
if dist == 0:

return None
for c in ascii_letters:

f = search(T.s[c], dist - 1, w, i) # insertion
if f is not None:

return c + f
f = search(T.s[c], dist - 1, w, i + 1) # substitution
if f is not None:

return c + f
return search(T, dist - 1, w, i + 1) # deletion
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Variant
A more complex structure exists that merges nodes as long as they have a single child.
A node is thus labelled with a word, rather than by a simple letter, see Figure 2.2. This
structure, optimal in memory and in traversal time, is known as a Patricia trie (see
Morrison, 1968).

Problem
Spell checker [icpcarchive:3872]

2.4 Searching for Patterns

input: lalopalalali lala
output ^

Definition
Given a string s of length n and a pattern t of length m, we want to find the first index
i such that t is a factor of s at the position i. The response should be −1 if t is not a
factor of s.

Complexity
O(n+m) (see Knuth et al., 1977).

Naive Algorithm
This consists of testing all possible alignments of t under s and for each alignment i

verifying character by character if t corresponds to s[i..i + m − 1]. The complexity
is O(nm) in the worst case. The following example illustrates the comparisons
performed by the algorithm for an example. Each line corresponds to a choice of
i, and indicates the characters of the ‘pattern motif’ that match, or an × for a
difference.

l a l o p a l a l a l i

0 l a l ×
1 ×
2 l ×
3 ×
4 ×
5 ×
6 l a l a

Observe that after handling a few i, we already know about a good portion of the
string s. We could use this information to skip the comparison of t[0] with s[i] in
the above example. This observation is extended to a study of the boundaries of the
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strings, leading to the optimal Knuth–Morris–Pratt algorithm, described in the next
section.

2.5 Maximal Boundaries—Knuth–Morris–Pratt

entrée: abracadabra
sortie: abra abra

An important classic problem on character strings is the detection of occurrences
of a pattern t in a string s. The Knuth–Morris–Pratt algorithm solves this problem
in optimal linear time O(|t | + |s|) (see Knuth et al., 1977). The essential ingredient
of this algorithm is the search for the boundaries of a string, which is the subject of
this section. At first sight this problem seems to be totally artificial and without any
applications. However, do not be fooled—this problem is at the heart of several classic
problems concerning character strings, and we will present a few of these. We begin
by introducing a few formal notions. Note that in what follows, the terms ‘word’ and
‘character string’ are used interchangeably.

Definition
The boundary of a word w is a word that is at the same time a strict prefix and a strict
suffix of w, where by strict we mean that the length of the boundary must be strictly
less than the length of w. The maximal boundary of w is its longest boundary, and
is denoted β(w). For example, abaababaa has for boundaries abaa, a and the empty
word ε, hence β(abaababaa) = abaa. See Figure 2.3 for an illustration.

a b a a b a b a a

a b a a b a b a a

w:

w:

maximal boundary

Figure 2.3 Intuitively, the maximal boundary represents the longest overlap of a word with
itself: take two copies of the word w one over the other, and slide the second to the right until
the letters of the two words coincide. The portion of w corresponding to this overlap is then its
maximal boundary.

Given a string w = w0 · · ·wn−1, we would like to compute its maximal boundary.
As we will see further on, this problem is recursive in nature, and hence the solution
is based on the computation of the maximal boundaries of each of its prefixes. As a
boundary is completely described by its length, we will in fact compute the lengths of
the maximal boundaries. We thus seek to efficiently construct the sequence of lengths
fi = |β(w0 · · ·wi)| for i = 0, . . . ,n− 1, see Figure 2.4.
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ba

a

a

a

b

b a

b a a

a b

a

a

a

w: a b a a b a b a a

0 1 2 3 4 5 6 7 8indices:

f0=0

f1=0

f2=1

f3=1

f4=2

f5=3

f6=2

f7=3

f8=4

Figure 2.4 The array f of boundary lengths illustrated with an example. For a given string w, fi

is the largest value k such that the suffix wi−k+1 . . . wi is equal to the prefix w0 . . . wk−1.

Key Observation
The relation of being a boundary is transitive: if v is a boundary of a boundary b of
u, then v is also a boundary of u. Moreover, if v is a boundary of u shorter than β(u),
then v is a boundary of β(u), see Figure 2.5. Hence, the iterated application of β to
a word w generates all the boundaries of w. For example, with w = abaababa, we
have β(w) = aba, then β(β(w)) = a and finally β(β(β(w))) = ε. This will prove very
useful for our algorithm.

ux u x

β(u) ? β(u) x

β(ux) v x v x

Figure 2.5 Visual explanation of the proof: every boundary of uwi can be written vwi where v is
a boundary of u, hence knowing the lengths of the boundaries of u allows the identification of
the longest boundary of uwi .

Algorithm and Proof
Suppose that we know the maximal boundaries for the first i prefixes of w, i.e. up to
the prefix u = w0 · · ·wi−1, for 1 ≤ i < n. Consider the next prefix uwi : if its maximal
boundary is not the empty word, then it is of the form vwi where v is a boundary
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of u. Thus, to find the longest boundary of uwi it suffices to verify whether for each
boundary v of u in order of decreasing length, the word vwi is a boundary of uwi , see
Figure 2.5. We already know that vwi is a suffix of uwi and that v is a prefix of u,
hence it suffices to compare the two letters wk =? wi where k = |v|: indeed, wk is the
letter following the prefix v in uwi . How can we iterate over the boundaries v of u in
order of decreasing size? We simply successively apply the function β to the word u,
until we hit the empty word. Note that to perform this test, we only need to know the
lengths of the boundaries v of u, which have been stored in the array f .

Illustration
We use a window that exposes a letter wi of the first copy of w and a letter wk of the
second copy. Three cases must be considered:

1. If the two characters are equal, then we know that w0 · · ·wk is the longest bound-
ary of w0 · · ·wi , and set fi = k + 1, since |w0 · · ·wk| = k + 1. The win-
dow is then shifted one step to the right in order to process the next prefix, see
Figure 2.6; this corresponds to an increment of both i and k.

2. If not, in the case wk �= wi and k > 0, we move on to the next smaller boundary
β(w0 . . . wk−1), of size fk−1. This boils down to shifting to the right the second
copy of w, until its contents coincide with the first along the whole of the left part
of the window, see Figure 2.6.

3. The final case corresponds to k = 0 and w0 �= wi . At this point, we know that the
maximal boundary of w0 . . . wi is the empty word. We thus set fi = 0.

a b a a b a b a a

a b a a b a b a a

a b a a b a b a a

a b a a b a b a a

a b a a b a b a a

a b a a b a b a a

i

k

Figure 2.6 An example of the execution of the Knuth–Morris–Pratt algorithm. When the
window reveals two identical characters, we set fi = k + 1 and shift to the right, which comes
down to incrementing i and k. However, when the window exposes two different characters,
the bottom word must be shifted to the right, so that its prefix determined by the window is of
length fk−1.
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Code
All these cases can be captured in just a few lines of code. An outer while loop looks
for the boundary of a suitable prefix (case 2 above). We exit this loop for one of
two reasons. First, if k = 0 (no non-empty boundary was found), then only a single
character remains to test: wk =? wi . If yes, then fi = 1 (case 1); if not, fk = 0
(case 3). Second, we exit because a non-empty boundary is found where wk = wi and
fi = k + 1: we increment k and then assign k to fi . We thus ensure that at each start
of the loop for, the value of k corresponds to the length of the longest boundary of the
preceding prefix.

def maximum_border_length(w):
n = len(w)
f = [0] * n # init f[0] = 0
k = 0 # current longest border length
for i in range(1, n): # compute f[i]

while w[k] != w[i] and k > 0:
k = f[k - 1] # mismatch: try the next border

if w[k] == w[i]: # last characters match
k += 1 # we can increment the border length

f[i] = k # we found the maximal border of w[:i + 1]
return f

Complexity
This algorithm consists of a while loop nested in a for loop, which suggests a
quadratic complexity. However, the behaviour of the algorithm should be considered
using the example illustrated above. For each comparison wk =? wi in the algorithm,
either the word on the bottom is shifted to the right or the window is shifted to the
right. Each of these movements can only be executed at most |w| times, which shows
the linear complexity in |w|: we speak of amortised complexity, as the long iterations
are on average compensated by other shorter iterations.

Application: Find the Longest Boundary Palindrome
input: lilipolilil
output: lil lil

A word x = x0x1 · · · xn−1 is a palindrome if x = ←−
x , where ←−x = xn−1 · · · x1x0.

Given a word x, we look for the longest palindrome u such that x can be written in
the form x = uvu for a word v. This problem comes down to seeking the longest
boundary of x

←−
x .

Application: Find a Pattern t in the String s

input: fragil supercalifragilisticexpialidocious
output: ^

The most important application of the maximal boundary algorithm is the search for
the first occurrence of a pattern t within a string s whose length is greater than |t |. The
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naive approach consists of testing all the possible positions of t with respect to s. More
precisely, for each position i = 0 . . . n − m in s we test if the substring s[i : i + m]
is equal to t . This equality test involves comparing for every j = 0 . . . m − 1 the
character s[i + j ] with t[j ]. These two nested loops have complexity O(nm).

The Knuth–Morris–Pratt algorithm selects a letter # occurring neither in t nor in s

and we consider the lengths fi of the maximal boundaries of the prefixes of w = t#s.
Note that these boundaries can never be longer than t , due to the character #, hence
fi ≤ |t |. However, if ever fi = |t |, then we have found an occurrence of t in s. In
the positive case, the answer to the problem is the index i − 2|t |: the length of t is
subtracted twice from i, once to arrive at the start of the boundary and another time
to obtain the index in s rather than in w, see Figure 2.7. Note that this algorithm
is a bit different from the classic presentation of the Knuth–Morris–Pratt algorithm,
composed of a pre-computation of the array f of boundaries of t followed by a very
similar portion seeking the maximal alignments of t with the prefixes of s.

a b a a # a b a b a a b a a

0 0 1 1 0 1 2 3 2 3 4 2 3 4

t#s:

f:

a b a a

a b a a

Figure 2.7 An execution of the maximal boundary search algorithm. Each occurrence of t in s

corresponds to a boundary of length |t | in the array f of lengths of maximal boundaries.

def knuth_morris_pratt(s, t):
sep = ’\x00’ # special unused character
assert sep not in t and sep not in s
f = maximum_border_length(t + sep + s)
n = len(t)
for i, fi in enumerate(f):

if fi == n: # found a border of the length of t
return i - 2 * n # beginning of the border in s

return -1

Method Provided by the Language Python
Note that the language Python provides an integrated method find, allowing the
search of a pattern t in a string s, simply with the expression s.find(t). A second
optional parameter permits the search to be started at a certain index in s. This func-
tionality will be useful in the problem of the determination of the period of a word,
presented below.
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Note
All standard libraries of common programming languages propose a function that
looks for a pattern needle in a string haystack. However, the function provided by
Java 10 has worst-case complexity �(nm), which is astonishingly expensive. We
invite the reader to measure, for their favourite language, the execution time as a
function of n of the search for the pattern anb in the string a2n, and protest if it is not
linear.

Application: Determine the Largest Integer Power of a Word
input: blablabla
output: (bla)^{3}

Given a word x, we would like to identify the largest integer k such that x can be
written as zk for a word z. If k > 1, then we say that x is not primitive.

We can use our Swiss army knife of the computation of boundaries to solve this
problem: if x can be written as y�, then all the yp for p = 0, . . . ,�− 1 are boundaries
of x. It remains to prove that y�−1 is the maximal boundary of x. So, if n is the length
of u and if n − fn divides n, the word is not primitive and the largest value of k we
seek is n/(n− fn), see Figure 2.8.

u a b a a b a a b a

β(u) a b a a b a
n − n

a b a a b a

Figure 2.8 Knowing the maximal boundary of a periodic word allows the determination of its
smallest period, here aba.

Proof
Suppose that w = zk for k maximal and β(w) can be written as zk−1q where qb = z

for a certain non-empty b. First, note that z = qb = bq (see Figure 2.9), hence
|b| ≤ |q|, otherwise zk−1b would be a larger boundary of w. Hence, b is a boundary of
z and bz = zb = bqb. Thus, bw = wb, meaning that at the same time b is a boundary
of w and w is a boundary of bw. We now prove the key observation: as long as b� is
smaller that w, then b� is a boundary of w. We already know this is true for � = 1,
and if it is true for b�, then bb� is a boundary of bw = wb; hence b�+1 and w are
boundaries of bw. This means that either b�+1 is a boundary of w, or w is a boundary
of b�+1. Let L be the largest integer for which bL is a boundary of w: then w = bLr =
rbL for a word r strictly smaller than b. If r is non-empty, then we have found a
boundary larger than the maximal boundary zk−1q, a contradiction. Hence, r is empty
and since |b| < |z|, the factorisation bL is suitable for L > k, again a contradiction.
See Figure 2.9
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def powerstring_by_border(u):
f = maximum_border_length(u)
n = len(u)
if n % (n - f[-1]) == 0: # does the alignment shift divide n ?

return n // (n - f[-1]) # we found a power decomposition
return 1

w

z

z

z

z

z

z

z

z

z

q b

q

q

Figure 2.9 If w = z4 = z3qb and we suppose that the maximal boundary of w is z3q, then the
boundary property allows us to see that z = bq = qb.

Note that a shorter implementation exists using the substring search function inte-
grated with Python, see Figure 2.10.

def powerstring_by_find(u):
return len(x) // (x + x).find(x, 1)

a b a a b a a b a a b a a b a a b a

a b a a b a a b a

Figure 2.10 Detection of the first non-trivial position of x in xx allows the identification of its
smallest period, here 3.

Application: Conjugate of a Word
input: sweetsour soursweet
output: sweet|sour sour|sweet

Another classic problem consists in detecting whether two words x and y are
conjugate, i.e. if they can be written as x = uv and y = vu for words u and v. In
the affirmative case, we would like to find the decomposition of x and y minimising
the length of u. This boils down to simply looking for the first occurrence of y in the
word xx.

Problems
Find the maximal product of string prefixes [codility:carbo2013]
A Needle in the Haystack [spoj:NHAY]
Power strings [kattis:powerstrings]
Period [spoj:PERIOD]
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2.6 Pattern Matching—Rabin–Karp

Complexity
The expected time is O(n+m), but the worst case complexity is O(nm).

Algorithm
The Rabin–Karp algorithm 1987 is based on a completely different idea from
Knuth–Morris–Pratt. To find a pattern t in a large string s, we slide a window of
length len(t) over s and verify if the content of this window is equal to t . Since a
character-by-character test is very costly, we instead maintain a hash value for the
contents of the current window and compare it to the hash value of the search string t.
If ever the hash values coincide, we proceed to the expensive character-by-character
test, see Figure 2.11. To obtain an interesting complexity, it is necessary to efficiently
update the hash value as the window shifts. We thus use what is known as a rolling
hash function.

If the hash function, with values in {0,1, . . . ,p − 1}, is well-chosen, we would
expect a collision—i.e. when two distinct strings u,v with the same size, selected
uniformly, give the same hash value—to occur with probability on the order of 1/p.
In this case, the mean complexity of the algorithm is O(n + m + m/p). Our imple-
mentation uses p on the order of 256, hence in practice the complexity is O(n + m),
but in the worst case, it is O(nm).

Figure 2.11 The idea of the Rabin–Karp algorithm is to first compare the hash values between t

and a window on s before performing a costly character-by-character comparison.

Rolling Hash Function
Our hash function first transforms an m-character string into m integers x0, . . . ,xm−1,
corresponding to their ASCII codes, lying between 0 and 127. The value of the hash
function is then the multilinear expression

h(x0, . . . ,xm−1) = (x0 · 128m−1 + x1 · 128m−2 + · · · + xm−2 · 128+ xm−1) mod p

where all of the operations are performed modulo a large prime number p. In practice,
care should be taken so that all of the values calculated can be manipulated on a
64-bit machine, where a machine word (CPU register) contains signed integer values
between −263 and 263− 1. The largest intermediate value calculated by the algorithm
is 128 · (p−1) = 27 · (p−1), hence for our implementation we have chosen p < 256.

The polynomial form of this hash function allows us to calculate in constant time
the value of h(x1, . . . ,xm) in terms of x0,xm and h(x0, . . . ,xm−1): removing the first
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character amounts to subtracting the first term, shifting the characters to the left
corresponds to a multiplication by 128 and modifying the last character is done by
adding a term. Consequently, shifting the window on s, updating the hash value and
comparing it with that of t takes constant time.

Note in the code below the addition of the value DOMAIN * PRIME (which is of
course 0 mod p) to ensure that the calculations remain in the non-negative integers.
This is not strictly necessary in Python but is required in languages such as C++, where
the calculation of modulo can return a negative number.

PRIME = 72057594037927931 # < 2^{56}
DOMAIN = 128

def roll_hash(old_val, out_digit, in_digit, last_pos):
val = (old_val - out_digit * last_pos + DOMAIN * PRIME) % PRIME
val = (val * DOMAIN) % PRIME
return (val + in_digit) % PRIME

The implementation of the algorithm begins with a function to compare character-
by-character factors of length k in s at the position i and in t at the position j .

def matches(s, t, i, j, k):
# tests if s[i:i + k] equals t[j:j + k]
for d in range(k):

if s[i + d] != t[j + d]:
return False

return True

Next, the implementation of the Rabin–Karp algorithm itself begins with the com-
putation of the hash values of t and of the first window on s, followed by a loop over
all the factors of s, until a match is found.

def rabin_karp_matching(s, t):
hash_s = 0
hash_t = 0
len_s = len(s)
len_t = len(t)
last_pos = pow(DOMAIN, len_t - 1) % PRIME
if len_s < len_t: # substring too long

return -1
for i in range(len_t): # preprocessing

hash_s = (DOMAIN * hash_s + ord(s[i])) % PRIME
hash_t = (DOMAIN * hash_t + ord(t[i])) % PRIME

for i in range(len_s - len_t + 1):
if hash_s == hash_t: # hashes match

# check character by character
if matches(s, t, i, 0, len_t):

return i
if i < len_s - len_t:

# shift window and calculate new hash on s
hash_s = roll_hash(hash_s, ord(s[i]), ord(s[i + len_t]),

last_pos)
return -1 # no match
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This algorithm is less efficient than that of Knuth–Morris–Pratt: our experiments
measured roughly a factor of 3 increase in the computation time. Nevertheless, its
interest lies in the fact that its technique can be applied to solve several interesting
variants of this problem.

Variant: The Search for Multiple Patterns
The Rabin–Karp algorithm which verifies if a string t is a factor of a given string s

can naturally be generalised to a set T of strings to be found in s, in the case where
all of the strings of T have the same length. It suffices to store the hash values of the
strings in T in a dictionary to_search and for each window on s to verify whether
the associated hash value is contained in to_search.

Variant: Common Factor
Given two strings s,t and a length k, we look for a string f of length k that is
at the same time a factor of s and of t . To solve this problem, we first consider
all of the factors of length k of the string t . These substrings are obtained in an
analogous method to the Rabin–Karp algorithm, by sliding a window of size k across
t and storing the resulting hash values in a dictionary pos. With each hash value, we
associate the start positions of the corresponding windows.

Next, for each factor x of s of length k, we verify whether the hash value v is in
pos, in which case we compare character-by-character x with the factors in t at the
positions of pos[v].

For this algorithm, we must pay attention to the choice of the hash function. If
s and t are of length n, it is necessary to choose p ∈ �(n2), so that the number
of collisions between the hash values of one of the O(n) windows of t with one
of the O(n) windows of s is roughly constant. For a precise analysis, see Karp and
Rabin (1987).

Variant: Common Factor with Maximal Length
Given two strings s,t , finding the longest common factor can be done with a
binary search on the length k by using the previous algorithm. The complexity is
O(n log m) where n is the total length of s and t , and m is the length of the optimal
factor.
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def rabin_karp_factor(s, t, k):
last_pos = pow(DOMAIN, k - 1) % PRIME
pos = {}
assert k > 0
if len(s) < k or len(t) < k:

return None
hash_t = 0

# First calculate hash values of factors of t
for j in range(k):

hash_t = (DOMAIN * hash_t + ord(t[j])) % PRIME
for j in range(len(t) - k + 1):

# store the start position with the hash value
if hash_t in pos:

pos[hash_t].append(j)
else:

pos[hash_t] = [j]
if j < len(t) - k:

hash_t = roll_hash(hash_t, ord(t[j]), ord(t[j + k]), last_pos)

hash_s = 0
# Now check for matching factors in s
for i in range(k): # preprocessing

hash_s = (DOMAIN * hash_s + ord(s[i])) % PRIME
for i in range(len(s) - k + 1):

if hash_s in pos: # is this signature in s?
for j in pos[hash_s]:

if matches(s, t, i, j, k):
return (i, j)

if i < len(s) - k:
hash_s = roll_hash(hash_s, ord(s[i]), ord(s[i + k]), last_pos)

return None

Problem
Longest Common Substring [spoj:LCS]

2.7 Longest Palindrome of a String—Manacher

input: babcbabcbaccba
output: abcbabcba

Definition
A word s is a palindrome if the first character of s is equal to the last, the second is
equal to the next-to-last and so on.

The problem of the longest palindrome consists in determining the longest factor
that is a palindrome.
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Complexity
This problem can be solved in quadratic time with the naive algorithm, in time
O(n log n) with suffix arrays, but in time O(n) with Manacher’s algorithm (1975),
described here.

Algorithm
First, we transform the input s by inserting a separator # around each character and
by adding sentinels ^ and $ around the string. For example, abc is transformed into
^#a#b#c#$. Let t be the resulting string. This allows us to process in an equivalent
manner palindromes of both even and odd length. Note that with this transformation,
every palindrome begins and ends with the separator #. Thus, the two ends of a
palindrome have indices with the same parity, which simplifies the transformation
of a solution on the string t into one on the string s. The sentinels avoid special care
for the border cases.

The word nonne contains a palindrome of length 2 (nn) and one of length 3 (non). Their
equivalents in

|-----|
^#n#o#n#n#e#$

|---|

all begin and end with the separator #.

The output of the algorithm is an array p indicating for each position i, the largest
radius r such that the factor from i − r to i + r is a palindrome. The naive algorithm
is the following: for each i, we initialise p[i] = 0 and increment p[i] until we find the
longest palindrome t[i − p[i], . . . ,i + p[i]] centred on i.

d
i

c
j

Figure 2.12 Manacher’s algorithm. Having already computed p for the indices < i, we wish to
compute p[i]. Suppose there is a palindrome centred on c of radius d − c with d maximal, and
let j be the mirror image of i with respect to c. By symmetry, the palindrome centred on j of
radius p[j ] must be equal to the word centred on i, at least up to the radius d − i.
Consequently, p[j ] is a lower bound for the value p[i].

Manacher’s improvement concerns the initialisation of p[i]. Suppose we already
know a palindrome centred on c with radius r , hence terminating on the right at
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d = c + r . Let j be the mirror image of i with respect to c, see Figure 2.12. There is
a strong relation between p[i] and p[j ]. In the case where i +p[j ] is not greater than
d, we can initialise p[i] by p[j ]. This is a valid operation, as the palindrome centred
on j of radius p[j ] is included in the first half of the palindrome centred on c and of
radius d − c; hence it is also found in the second half.

After having computed p[i], we must update c and d, to preserve the invariant that
they code a palindrome with d − c maximal. The complexity is linear, since each
comparison of a character is responsible for an incrementation of d.

def manacher(s):
assert set.isdisjoint({’$’, ’^’, ’#’}, s) # Forbidden letters
if s == "":

return (0, 1)
t = "^#" + "#".join(s) + "#$"
c = 1
d = 1
p = [0] * len(t)
for i in range(2, len(t) - 1):

# -- reflect index i with respect to c
mirror = 2 * c - i # = c - (i-c)
p[i] = max(0, min(d - i, p[mirror]))
# -- grow palindrome centered in i
while t[i + 1 + p[i]] == t[i - 1 - p[i]]:

p[i] += 1
# -- adjust center if necessary
if i + p[i] > d:

c = i
d = i + p[i]

(k, i) = max((p[i], i) for i in range(1, len(t) - 1))
return ((i - k) // 2, (i + k) // 2) # extract solution

Application
A man is walking around town, and his smartphone registers all of his movements.
We recover this trace and seek to identify a certain type of trajectory during the day,
notably round trips between two locations that use the same route. For this, we extract
from the trace a list of street intersections and check it for palindromes.

Problems
Longest Palindromic Substring [spoj:LPS]
Casting Spells [kattis:castingspells]
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What is dynamic programming? It is a method to break down the resolution of a
problem into a combination of solutions of some of its sub-problems. We first compute
the solution of the subproblems and store them to be used later on (principle of
memoisation), in an order fixed according to a sweep. This technique is particularly
well-adapted to problems on sequences, where the sub-problems are, for example,
defined on the prefixes of a sequence.

3.1 Shortest Path in a Grid

Definition
Consider a grid of (n + 1) × (m + 1) cells, labelled (i,j ) with 0 ≤ i ≤ n and
0 ≤ j ≤ m. The cells are linked by weighted arcs: the predecessors of a cell (i,j )
are (i − 1,j ),(i − 1,j − 1) and (i,j − 1), with the exception of the cells in the first
column and first row (see Figure 3.1). The goal is to find the shortest path from (0,0)
to (n,m).

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3 2 1

1

0

2

4

3 1

0

1 1

1

1

1 2

2

1 0

0

2 1

1

Figure 3.1 Shortest path in a directed grid, illustrated by the heavy arcs.

Algorithm in O(nm)
As this graph is directed and acyclic (abbreviated DAG, for directed acyclic graph),
we can solve this problem by dynamic programming, by computing the distances from
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(0,0) to all of the cells (i,j ) in a certain order. First of all, the distances to the cells of
the first row and first column are easy to compute, since a unique path towards these
cells exists. Next, we compute the distances to the cells (i,j ) with 1 ≤ i ≤ n,1 ≤
j ≤ m in lexicographical order. Each distance from (0,0) to an (i,j ) is the minimum
of three alternatives, which can be determined in constant time, as the distances to the
predecessors of (i,j ) have already been computed.

Variants
Several classic problems can be reduced to this simple problem, as described in the
following sections.

Problem
Philosophers Stone [spoj:BYTESM2]

3.2 The Levenshtein Edit Distance

input: AUDI, LADA
output: LA-DA

-AUDI
3 operations: deletion L, insertion U, substitution A by I

Definition
Given two strings x,y, we wish to know how many operations (insertion, deletion, or
substitution) are required to transform x into y. This distance is used, for example, in
the Unix command diff, which displays line-by-line a minimal number of operations
to transform one file into another.

Algorithm in O(nm)
For n = |x|,m = |y|, we present an algorithm in O(nm) using dynamic programming,
see Figure 3.2. We construct an array A[i,j ] giving the distance between the prefix of
x of length i and the prefix of y of length j . To begin, we initialise A[0,j ] = j and
A[i,0] = i (the distances from the empty string to the various prefixes of x and y).
Then, in general, when i,j ≥ 1, there are three possibilities for the last letters of the
prefixes. Either xi is deleted, or yj is inserted (at the end), or xi is replaced by yj (if
they are not already equal). This gives the following recurrence formula, where match
is a Boolean function which returns 1 if its arguments are identical:

A[i,j ] = min

⎧⎪⎨
⎪⎩

A[i − 1,j − 1]+match(xi,yj )

A[i,j − 1]+ 1

A[i − 1,j ]+ 1.

This function encodes the cost of a letter substitution, which can be adjusted if desired.
For example, the cost could depend on the distance between letters on the keyboard.
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L A D A

A

U

D

I

0 1 2 3 4

1 1 1 2 3

2 2 2 2 3

3 3 3 2 3

4 4 4 3 3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1

1

1

1

0

1

1

1

1

1

0

1

0

1

1

1

Figure 3.2 Shortest path in a directed graph, determining the edit distance between two words.

Sequence of Operations
As well as computing the edit distance between the strings, it would be nice to know
the operations necessary to transform x into y. This can be done as in the search
for the shortest path in a graph. By examining the distances of its predecessors, we
can determine a choice that realises a minimal distance to a node. Thus we can trace
the path from the node (n,m) back to (0,0), and along this path produce the list of
operations corresponding to the optimal edits. At the end, it suffices to reverse this list.

Implementation Details
Note that in the description of the dynamic program, the dimension of the array A is
(n+ 1)× (m+ 1), whereas the strings are of length n and m. This is because A takes
into account all prefixes of x and y, including the empty string ε. So x has n + 1
prefixes, and y has m+ 1.
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def levenshtein(x, y):
n = len(x)
m = len(y)
# Create the table A
# Row 0 and column 0 are initialized as required
# The remaining entries will be overwritten during the computation
A = [[i + j for j in range(m + 1)] for i in range(n + 1)]
for i in range(n):

for j in range(m):
A[i + 1][j + 1] = min(A[i][j + 1] + 1, # insert

A[i + 1][j] + 1, # delete
A[i][j] + int(x[i] != y[j])) # subst.

return A[n][m]

To Go Further
Algorithms with better performance in practice have been proposed. For example, if
an upper bound s is known for the edit distance, then the above dynamic program can
be restricted to entries in A at a distance of at most s from the diagonal, to obtain a
complexity of O(s min{n,m}) (Ukkonen, 1985).

Problems
Edit distance [spoj:EDIST]
Advanced Edit Distance [spoj:ADVEDIST]

3.3 Longest Common Subsequence

input: GAC, AGCAT
output: A G C A T

| |
G A C

Definition
Let � be a set of symbols. For two sequences s,x ∈ ��, s is said to be a subsequence
of x if indices i1 < . . . < i|s| exist such that xik = sk for every k = 1, . . . ,|s|. Given
two sequences x,y ∈ ��, we wish to find a maximal length sequence s ∈ ��, which
is a subsequence of both x and y.
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Another way to see the problem involves matchings, see Section 9.1 on page 139.
We seek a maximum matching between equal letters of x and y such that the links
between the matches do not cross each other, see Figure 3.3.

Application
The program ‘diff’ reports differences between two files, expressed as a minimal list
of line changes to bring either file into agreement with the other (Hunt and McIlroy,
1976). To do this, it is necessary to identify the largest common subsequence of lines
between both files

This problem also arises in bioinformatics, for example when aligning two chains
of nitrogenous bases.

A B C D A E

A E D B E A

Figure 3.3 The problem of the longest common subsequence can be seen as a maximal
alignment without crossings between equal elements of the two given sequences. For example,
an additional alignment of the letters B would cross the alignment of the letters D.

Algorithm in O(nm)
We present an algorithm in O(nm), where n = |x|,m = |y|. The idea is to compute
for every 0 ≤ i ≤ n and 0 ≤ j ≤ m the longest common subsequence of the prefixes
x1 . . . xi and y1 . . . yj . This gives n ·m subproblems. The optimal solution for (i,j ) can
be computed from the solutions for (i − 1,j ),(i,j − 1), and (i − 1,j − 1), in constant
time. We can thus solve the problem for (n,m) in time O(nm). The algorithm is based
on the following observation.

Key Observation
Let A[i,j ] be a longest common subsequence of x1 . . . xi and y1 . . . yj . If i = 0 or
j = 0, then A[i,j ] is empty. If xi �= yj , then necessarily one of the letters xi,yj

is not matched in an optimal solution and A[i,j ] is the longest sequence between
A[i − 1,j ] and A[i,j − 1]. If xi = yj , then an optimal solution exists that makes
a match between these letters and A[i,j ] is A[i − 1,j − 1] · xi . Here, the symbol
‘·’ represents concatenation, and by maximum we mean the sequence of maximal
length.

Implementation
In the simplified implementation given below, the variable A[i][j] does not represent
the sequence A[i,j ], but instead represents its length.
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def longest_common_subsequence(x, y):
n = len(x)
m = len(y)

# -- compute optimal length
A = [[0 for j in range(m + 1)] for i in range(n + 1)]
for i in range(n):

for j in range(m):
if x[i] == y[j]:

A[i + 1][j + 1] = A[i][j] + 1
else:

A[i + 1][j + 1] = max(A[i][j + 1], A[i + 1][j])

# -- extract solution in reverse order
sol = []
i, j = n, m
while A[i][j] > 0:

if A[i][j] == A[i - 1][j]:
i -= 1

elif A[i][j] == A[i][j - 1]:
j -= 1

else:
i -= 1
j -= 1
sol.append(x[i])

return ’’.join(sol[::-1]) # reverse the list to obtain the solution

Variant for Several Given Sequences
Suppose that we seek a longest common subsequence, not for 2, but for k given
sequences, of length n1, . . . ,nk , respectively. Then the above approach can be gen-
eralised. We generate a matrix A of dimension k, computing the longest common
sequence for every combination of prefixes of the given sequences. The complexity of
this algorithm is O(2k

∏k
i=1 ni).

Variant with Two Sorted Sequences
The problem can be solved in time O(n+m) if both sequences are sorted; in this case,
we can proceed as in the merge of two sorted lists (see Section 4.1 on page 73).

In Practice
The algorithm BLAST (for Basic Local Alignment Search Tool) is widely used, but it
does not always guarantee to produce an optimal solution.

Problems
Longest Common Substring [spoj:LCS]
Longest Common Subsequence [spoj:LCS0]
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3.4 Longest Increasing Subsequence

Definition
Given a sequence of n integers x, find a strictly increasing subsequence of s of
maximal length.

Application
Consider a straight road leading to the sea, with houses built along the road. Each
house has several floors and enjoys a sea view if all the houses between it and the sea
have fewer floors. We wish to give each house a sea view. What is the minimal number
of houses that must be demolished to reach this goal (see Figure 3.4)?

Figure 3.4 Demolish the least number of houses so that the rest have a sea view.

Algorithm in O(n log n)
More precisely, the complexity is O(n log m) where m is the size of the solution
produced by the algorithm. Using a greedy approach, for each index i, we want to
append xi to an increasing subsequence1 of the prefix x1, . . . ,xi−1. But which of these
subsequences will lead to an optimal solution? Consider the set of subsequences of the
prefix. In a subsequence y two attributes are important: its length and the last element.
Intuitively: we like the subsequences to be long—as this is the attribute to optimise—
and we like them to end with a small element, since this allows more opportunities to
easily complete it.

To formalise this intuition, denote by |y| the length of a subsequence y and by y−1

the last element of y. The sequence y is said to dominate z if |y| ≥ |z| and y−1 ≤ z−1

and at least one of these inequalities is strict. It suffices to consider the non-dominated
subsequences that can possibly be extended to an optimal subsequence.

The non-dominated subsequences of the prefix x1, . . . ,xi−1 differ by their length.
Thus, for each length k we keep a subsequence of length k ending with a minimal
integer. More specifically, we maintain an array b such that b[k] is the last element of
the longest subsequence of length k. By convention, b[0] = −∞.

The key observation is that the array b is strictly increasing. Hence, when xi is
considered, at most one of the subsequences needs to be updated. In particular, if k is

1 We omit the adjective increasing from now on for readability.
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such that b[k − 1] < xi < b[k], then we can improve the sequence of length k − 1 by
appending xi , and obtain a better subsequence of length k, since it ends with a smaller
element. If xi is greater than all the elements of b, we can extend b with the element xi .
This is the only possible improvement, and the search for the index k can be done by
dichotomy in time O(log |b|), where |b| is the size of b.

Implementation Details
The subsequences are represented by linked lists with the aid of arrays h and p. The
heads of the lists are held in h, such that b[k] = x[h[k]], while the predecessor of an
element j is p[j ]. The lists are terminated by the constant None, see Figure 3.5.

93 1 4 1 5 9 2 6 5 4 5 3x

p

h

b

0 1 2 3 4

− 21 4 5

7 9

index

Figure 3.5 Computation of the longest increasing subsequence. In grey the input x being
processed. For the prefix considered, the sequences so far are (),(1),(1,2),(1,2,4),(1,2,4,5).
After processing the element 3, the sequence (1,2,4) is dethroned by (1,2,3).

from bisect import bisect_left

def longest_increasing_subsequence(x):
n = len(x)
p = [None] * n
h = [None]
b = [float(’-inf’)] # - infinity
for i in range(n):

if x[i] > b[-1]:
p[i] = h[-1]
h.append(i)
b.append(x[i])

else:
# -- binary search: b[k - 1] < x[i] <= b[k]
k = bisect_left(b, x[i])
h[k] = i
b[k] = x[i]
p[i] = h[k - 1]

# extract solution in reverse order
q = h[-1]
s = []
while q is not None:

s.append(x[q])
q = p[q]

return s[::-1] # reverse the list to obtain the solution
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Variant: Non-Decreasing Subsequence
If the subsequence does not need to be strictly increasing, but merely non-decreasing,
then instead of searching for k such that b[k−1] < x[i] ≤ b[k], we look for k such that
b[k − 1] ≤ x[i] < b[k]. This can be done using the Python function bisect_right.

Variant: Longest Common Increasing Subsequence
Given two sequences x and y, we wish to find the longest common increasing subse-
quence. This problem can easily be solved in cubic time, by first sorting y to produce a
sequence z, and then looking for a common subsequence to x,y,z. A better algorithm
in time O(|x| · |y|) was published in 2005 by Yang et al.; however, this complexity was
already required to solve a problem posed during the ACM/ICPC/NEERC competition
a couple years earlier, in 2003.

Problem
Easy Longest Increasing Subsequence [spoj:ELIS]

3.5 Winning Strategy in a Two-Player Game

Definition
Consider a game over a stack of positive integers played by two players (in this
instance, both players are female, in order to avoid convoluted grammar), see
Figure 3.6. Player 0 starts. If the stack is empty, she loses. If not, then if the top
of the stack contains an integer x, she has the choice between popping one element
or popping x times. The latter option is authorised only if the stack contains at least x

elements. Then it is the turn of Player 1 to play, and so on. Suppose you are given a
stack P with n integers; the question is whether Player 0 has a winning strategy, i.e. if
she can play in a way that wins no matter what Player 1 chooses to do.

4 3 2 1 3 2 4 1

Figure 3.6 A configuration of the game.

Complexity
The complexity is linear using dynamic programming.

Algorithm by Dynamic Programming
Simulating the game would be too expensive, as the binary choices would lead to a
combinatorial explosion. This is where dynamic programming can come in handy. Let
G be a Boolean array of size n, where G[i] indicates whether it is possible for a player
to win if she begins the match with a stack reduced to the first i elements. The idea is
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that Player 0 has a winning strategy if she manages in one shot to place Player 1 in a
position where she can never win.

The base case is G[0] = False, and the inductive case for i > 0 is

G[i] =
{

G[i − 1] ∨G[i − P [i]] if P [i] ≤ i

G[i − 1] otherwise.

By a simple scan in a linear number of steps, the array G can be populated, and the
problem is solved by returning G[n− 1].
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Arrays figure as one of the most important of the elementary data types. For many
simple problems, no other data structure is required. In Python, arrays are stored in
the data type called list. The choice of this name might be confusing, because Python
lists have nothing to do with linked lists, which are standard objects in C++ (std::list )
and Java (LinkedList). Typically, a linked list allows the deletion or insertion of a
given element at a given position in constant time. However, inserting into a Python
list requires building in linear time a new list consisting of a prefix, the new element
and a suffix. The elements of a Python list are indexed from 0. This must be taken into
consideration when reading or displaying data, if ever the numbering of the elements
begins at 1 in the format of the inputs or outputs.

In what follows, we use ‘array’ as the generic language-independent term, and ‘list’
when referring to the specific Python data structure.

An array can be used to represent a binary tree in a very simple manner. The
parent of a node at index i is found at �i/2�, its left child at index 2i and its right
child at index 2i + 1. The root is at index 1 and the element at index 0 is simply
ignored.

This section deals with classic problems on arrays, and presents data structures to
perform operations on intervals of indices known as ranges, for example, the compu-
tation of a minimal value within a range. Two of the sections describe dynamic data
structures used to provide efficient operations of element modification and queries
over such ranges.

Recall: In Python, the last element of a list t can be accessed with the index -1.
A reversed copy of t is obtained with t[::−1]. A new element is added with the
method append. In this sense, Python lists are similar to the class ArrayList
of Java or the class vector of C++.

Section 1.2.1 on page 6 contains a more complete introduction to Python lists.
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4.1 Merge of Sorted Lists

Definition
Given two sorted lists x and y, produce a sorted list z, containing the elements of
x and y.

Application
This operation is useful for the merge sort algorithm. To sort a list, we divide it into
two portions of equal size (up to a difference of one element if the length is odd). The
two portions are then sorted recursively, and the sorted results are merged using the
procedure described below. This algorithm has an optimal complexity of O(n log n)
comparisons.

Algorithm in Linear Time
The solution consists of conjointly running over the two lists and constructing z as
we go. The key is to advance at each step within the list having the smallest current
element. This ensures that the result itself will be sorted.

1 3 4 6
7

10 12 17

8 11 15 18

Figure 4.1 Merging two lists works a bit like a zipper with minimum selection instead of
alternation.

def merge(x, y):
z = []
i = 0
j = 0
while i < len(x) or j < len(y):

if j == len(y) or i < len(x) and x[i] <= y[j]: # priority on x
z.append(x[i])
i += 1

else:
z.append(y[j]) # now switch to y
j += 1

return z

Variant with k Lists
To rapidly identify the list in which we need to advance, we can store the k current
elements of each list in a priority queue. The complexity is then O(n log k) where n is
the length of the resulting list.
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Problem
Mergesort [spoj:MERGSORT]

4.2 Sum Over a Range

Definition
Each request is of the form of an interval of indices [i,j ) and must return the sum of
the elements of t between the indices i (included) and j (excluded).

Data Structure in O(1) per Request and Initialisation in O(n)
It suffices to compute an array s of size n + 1, containing all the sums of prefixes
of t . More specifically, s[j ] = ∑

i<j t[i]. In particular, s[0] = 0,s[1] = t[0],s[n] =∑n−1
i=0 t[i]. Then the response to the request [i,j ) is s[j ]− s[i].

4.3 Duplicates in a Range

Definition
Each request is in the form of an interval of indices [i,j ) and we must either find an
element x of t appearing at least twice within this interval or announce that all the
elements are distinct.

Data Structure in O(1) per Request and Initialisation in O(n)
With a sweep from left to right, we construct an array p indicating for each j the
largest index i < j such that t[i] = t[j ]. When t[j ] is seen for the first time, we set
p[j ] = −1.

The computation of p requires storing, for each element x, the index of the last
occurrence of x observed in t during the sweep. This can be done with an array if
there is a guarantee on the domain of the elements of t , or otherwise with a dictionary
based on a hash table.

In parallel, we store in an array q, for each j , the largest value of p[i] for all i ≤ j .
In response to a request [i,j ), if ever q[j − 1] < i then all the elements in [i,j ) are
distinct, otherwise t[q[j − 1]] is a duplicate.

To determine the indices of two occurrences, it suffices to compute in parallel with
q[j ] the index i that realises the maximum.

index 0 1 2 3 4 5 6 7 8 9

t a b a a c d b a b c
p −1 −1 0 2 −1 −1 1 3 6 4
q −1 −1 0 2 2 2 2 3 6 6

Figure 4.2 The algorithm for finding duplicates on an example. In the interval [3,6) all elements
of t are distinct because q[5] < 3. However, the interval [4,10) contains duplicates, for
example, b at the positions q[9] and p[q[9]].
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Problem
Unique Encryption Keys [icpcarchive:5881]

4.4 Maximum Subarray Sum

Definition
This statistical problem seeks to find, for an array of values t , the maximum of t[i]+
t[i + 1]+ · · · + t[j ] over every pair of indices i,j with i ≤ j .

Algorithm in O(n)
This solution by dynamic programming was found by Jay Kadane in 1984. For each
index j we look for the maximal sum t[i] + · · · + t[j ] over all indices 0 ≤ i ≤ j .
Denote A[j ] as this value. This value must be either t[j ] itself, or made up of t[j ] plus
a sum of the form t[i]+ · · · + t[j − 1], which is itself maximal. Hence, A[0] = t[0],
as this is the only option, and for j ≥ 1, we have the recurrence relation A[j ] =
t[j ]+max{A[j − 1],0}.

Variants
This problem can be generalised to matrices. Given a matrix M of dimension n×m,
a range of row indices [a,b] and a range of column indices [i,j ] define a rectangle
[a,b] ⊗ [i,j ] within the matrix. We wish to find the rectangle with the largest sum.
For this, it suffices to loop over all pairs of row indices [a,b],a ≤ b, and for each pair
generate an array t of length m, such that t[i] = M[a,i] + · · · +M[b,i]. This array
can be obtained in time O(m) from the array of the previous iteration corresponding
to the pair [a,b − 1], by simply adding the bth row of M . With the aid of the above
algorithm, we can find in time O(m) a range of columns [i,j ] which describes a
rectangle [a,b] ⊗ [i,j ] of maximal sum bounded by the rows a and b. The largest
sum seen when looping over a and b gives the maximal sum for M . This approach
produces a solution with complexity O(n2m).

Problems
Maximum Sum Sequences [spoj:MAXSUMSQ]
Largest Rectangle [codechef:LARGEST]

4.5 Query for the Minimum of a Range—Segment Tree

Definition
We wish to maintain a data structure storing an array t of n values and allowing the
following operations:

• change t[i] for a given index i.

• calculate mini≤j<k t[j ] for a given range of indices i,k.
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Variant
With only minor changes we can also determine the index of the minimum element
along with its value.

Data Structure with O(log n) per Request
The idea is to complement the array t with a binary tree, known as a segment tree.
This data structure is also known as a BIT-tree (Binary Index Tree). Each node is
responsible for a range of indices in t , see Figure 4.3. The size of a range is a power
of 2, and the two children of a node are responsible for the two halves of the range.
The leaf nodes at the bottom level of the tree contain the values of t . For each node, we
simply store the minimum of the values of the array in the associated range.

An update of an array entry requires a logarithmic number of updates in the
structure, on each node on the path down from the element in question. The search for
the minimum over a given range [i,k) is done with a recursive exploration of the tree.
The function _range_min(j, start, span, i, k) returns the minimum of the array
t among the indices of [start,start+span) ∩ [i,k), where j is the index of the node
corresponding to this range. The search terminates when either the range of the current
node is contained in [i,k)—in which case, we return the value of the node—or when
the range of the current node is disjoint from [i,k)—in which case, we return +∞.

Figure 4.3 The tree used in the structure to determine the minimum in a range.

Analysis of the Complexity
To convince ourselves that the time taken per request is O(log n), we distinguish four
types of nodes encountered in the traversal. Let [s,t) be the range corresponding to a
node.

• The node is said to be empty if [s,t) is disjoint from [i,k).

• The node is said to be full if [s,t) ⊆ [i,k).

• The node is said to be strict if [s,t) ⊃ [i,k).

• Otherwise, the node is said to be overlapping.

Note that for an overlapping node, the ranges [s,t) and [i,k) intersect, but without one
being included in the other. The analysis follows from a bound on the number of nodes
of each type.

The search range_min traverses a logarithmic number of full nodes, which corre-
spond to the decomposition of [i,k) into disjoint ranges. This is the same for the empty
nodes, which correspond to a decomposition of the complement of [i,k) into ranges.
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The analysis terminates with the observation that the children of an overlapping node
are always either full or empty, and that only the root can be a strict node.

class RangeMinQuery:
def __init__(self, t, INF=float(’inf’)):

self.INF = INF
self.N = 1
while self.N < len(t): # find size N

self.N *= 2
self.s = [self.INF] * (2 * self.N)
for i in range(len(t)): # store values of t

self.s[self.N + i] = t[i] # in the leaf nodes
for p in range(self.N - 1, 0, -1): # fill inner nodes

self.s[p] = min(self.s[2 * p], self.s[2 * p + 1])

def __getitem__(self, i):
return self.s[self.N + i]

def __setitem__(self, i, v):
p = self.N + i
self.s[p] = v
p //= 2 # climb up the tree
while p > 0: # update node

self.s[p] = min(self.s[2 * p], self.s[2 * p + 1])
p //= 2

def range_min(self, i, k):
return self._range_min(1, 0, self.N, i, k)

def _range_min(self, p, start, span, i, k):
if start + span <= i or k <= start: # disjoint intervals

return self.INF
if i <= start and start + span <= k: # contained intervals

return self.s[p]
left = self._range_min(2 * p, start, span // 2,

i, k)
right = self._range_min(2 * p + 1, start + span // 2, span // 2,

i, k)
return min(left, right)

A weighted variant of this structure is put to use in order to efficiently calculate the
area of a union of rectangles, see Section 13.5 on page 205.

Problem
Negative Score [spoj:RPLN]

4.6 Query the Sum over a Range—Fenwick Tree

Definition
We wish to maintain a data structure t storing n values and allowing the following
operations for a given index a ∈ {0, . . . ,n− 1}:
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• update t[a].

• calculate t[0]+ · · · + t[a].

For technical reasons, internally we work with an array T whose indices vary from
1 to n, with t[a] = T [a + 1]. Hence, in Python, T [0] is ignored, and the length of T

will actually be n+ 1!. The first statement in the access methods to our structure is a
shift of the index, in order to hide this technical detail from the users.

This problem can be solved using a segment tree, as described in the previous sec-
tion. By replacing the constant∞ by 0 and the operation min by an addition, we obtain
a structure that solves the problem with a complexity O(log n) per request. The struc-
ture described in this section has a similar performance, but is quicker to implement.

Variant
With a slight modification, this structure can also be used to perform the following
operations in time O(log n).

• add a value across the whole of an interval t[a],t[a + 1], . . . ,t[b] for given indices
a,b.

• request the value of t[a] for a given index a.

For this, it suffices to use a Fenwick tree storing an array t ′, with t[a] = t ′[0] +
· · · + t ′[a]. Hence, reading t[a] reduces to calculating the sum of a prefix in t ′, and
adding a value to a suffix in t involves modifying a value in t ′. Hence, adding a value
to an interval of indices in t comes down to modifying two values in t ′ at the endpoints
of the interval.

Data Structure with O(log n) per Request
(see Fenwick, 1994). The idea of the structure is to store, not the array T itself, but
instead the sums over intervals of T . To this end, we create a new array s such that for
i ∈ {1, . . . ,n}, s[i] is the sum of T [j ] over j ∈ I (i), where I (i) is an interval defined
below. The element s[0] is ignored. These intervals are organised in the form of a tree
by inclusion in the following manner, with two relations: parent and left neighbour
(see Figure 4.4).

• The element s[i] where the binary representation1 of i is of the form x10k for
x ∈ {0,1}∗ contains the sum of elements of T over the interval I (i) = {x0k1, . . . ,i}.

• The parent of the index i = x10k is i + 10k .

1 We usually use subscript 2 to denote the binary representation, but it is omitted if no confusion is
possible.
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• The left neighbour of the index i = x10k is j = x00k . The interval I (j ) is the one
touching I (i) on the left.

Hence, the sum of the prefix T [1]+ · · · + T [i] with i = x10k is s[i] plus the sum of
the prefix T [1]+ · · · + T [x00k], in a recursive manner.

For example, in Figure 4.4, updating T [11] must change s[11 = 010112],
s[12 = 011002] and s[16 = 100002], and the sum of the prefix T [1] . . . T [11] is
the sum of s[11 = 010112], s[10 = 010102] and s[8 = 010002].

An important operation to implement this structure consists of isolating the least
significant non-zero digit in the binary representation i, i.e. to transform a number in
binary notation x10k into 10k . This operation is simply i&-i. As follows:

i = x10k

ī = x̄01k

−i = ī + 1 = x̄10k

i&− i = 10k

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

12

13

14

15

16

10

11

s

i binary parent neighbour
1 001 2 -
2 010 4 -
3 011 4 2
4 100 8 -
5 101 6 4
6 110 8 4
7 111 8 6

Figure 4.4 Example of a Fenwick tree. The relation ‘is parent of’ can be read vertically from
top to bottom. For example, 8 is the parent of 4, 6 and 7. An index i is left neighbour of j if the
interval I (i) touches I (j ) on the left. For example, 4 is the left neighbour of 5 and 6.
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class Fenwick:
def __init__(self, t):

self.s = [0] * (len(t) + 1) # create internal storage
for a, v in enumerate(t):

self.add(a, v) # initialize

def prefixSum(self, a):
i = a + 1 # internal index starts at 1
total = 0
while i > 0: # loops over neighbors

total += self.s[i] # cumulative sum
i -= (i & -i) # left neighbor

return total

def intervalSum(self, a, b):
return self.prefixSum(b) - self.prefixSum(a-1)

def add(self, a, val):
i = a + 1 # internal index starts at 1
while i < len(self.s): # loops over parents

self.s[i] += val # update node
i += (i & -i) # parent

# variante:
def intervalAdd(self, a, b, val):

self.add(a, +val)
self.add(b + 1, -val)

def get(self, a):
return self.prefixSum(a)

4.7 Windows with k Distinct Elements

Definition
Given a sequence x of n elements and an integer k, we wish to determine all the
intervals [i,j ), maximal by inclusion, such that xi, . . . ,xj−1 include exactly k distinct
elements, see Figure 4.5.

j

1 2 1 3 3 2 1 2 3

i

Figure 4.5 A window containing exactly 2 distinct elements.

Application
A cache is a rapid-access memory which is placed in front of a slower memory. The
address space of the slow memory is partitioned into equal-sized blocks, known as
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pages. The cache has limited capacity and can only hold k pages. The memory access
of a processor over time forms a sequence x whose elements are the pages requested.
When a requested page is in the cache, access to it is very fast, otherwise we speak
of a cache miss and the page must be loaded into the cache from slow memory in
place of another page (one that is used infrequently or has not been used in a long
time). Looking for intervals in x containing exactly k distinct elements reduces to
finding the intervals of time during which no cache misses have occurred, under the
hypothesis of a favourable initial cache configuration.

Algorithm in O(n)
The idea is to run over the sequence x with two cursors i and j that define a window.
We maintain the number of distinct elements of the set xi, . . . ,xj−1 in a variable dist,
with the aid of a counter of occurrences occ for each element. When dist exceeds the
parameter k, we advance i, otherwise we advance j . The following implementation
returns an iterator, and can be used by another function to individually process each
interval. As each of the two cursors i and j only advance, we perform at most 2n

operations, hence the linear time complexity.

def windows_k_distinct(x, k):
dist, i, j = 0, 0, 0 # dist = |{x[i], ..., x[j-1]}|
occ = {xi: 0 for xi in x} # number of occurrences in x[i:j]
while j < len(x):

while dist == k: # move start of interval
occ[x[i]] -= 1 # update counters
if occ[x[i]] == 0:

dist -= 1
i += 1

while j < len(x) and (dist < k or occ[x[j]]):
if occ[x[j]] == 0: # update counters

dist += 1
occ[x[j]] += 1
j += 1 # move end of interval

if dist == k:
yield (i, j) # one interval found

Variant
Given a ring of symbols (a list of characters looping back on itself), what is the length
of the smallest interval containing at least one instance of each symbol? This is indeed
a variant, as it suffices to run through the list concatenated with itself and determine
the smallest interval containing k distinct elements, where k is the total number of
symbols. A solution with two cursors again has linear complexity.

Problem
Épiphanie [prologin:2011:epiphanie]



5 Intervals

Several problems concerning intervals can be solved by dynamic programming.
The set of intervals that are before or after a threshold can form two independent
sub-instances.

If the problem permits, it is convenient to use half-open intervals of the form [s,t),
as the number of integers that they contain is then easy to compute (here simply t − s,
as long as s,t are integers).

5.1 Interval Trees

Definition
The problem consists of storing n given intervals in a structure in order to rapidly
answer queries of the following form: for a given value p, what is the list of all the
intervals containing p? We suppose that all the intervals are of the half-open form
[l,h), but the structure can be adapted to other forms.

Data Structure with O(log n+m) per Query
Here, m is the number of intervals returned. The structure is a binary tree constructed
as follows. Let S be a set of intervals to store. We choose a value center as described
below. This value divides the intervals into three groups: the set L of intervals to the
left of center, the set C of intervals containing center and the set R of intervals to
the right of center. Then the root of the tree stores center and C, and in a recursive
manner, the left and right subtrees store L and R, see Figure 5.1.

In order to quickly answer queries, the set C is stored in the form of sorted lists.
The list by_low stores the intervals of C ordered by their left endpoints, whereas the
list by_high stores the intervals of C ordered by their right endpoints.

To reply to a query for a point p, it suffices to compare p with center. If p <

center, then we recursively look for intervals containing p in the left subtree and
add the intervals [l,h) of C with l ≤ p. This is correct, since by construction these
intervals satisfy h > center and hence p ∈ [l,h). If not, and p ≥ center, then we
recursively look for intervals containing p in the right subtree and add the intervals
[l,h) of C with p < h.
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center

10

3

1 5

7

4 5

6 9

7 10

9

0

3

Figure 5.1 A tree storing 7 intervals.

Choice of center
For the binary tree to be balanced, we can choose center as the median value of the
left endpoints of the intervals to be stored. Then half the intervals will be stored in the
right subtree, guaranteeing a logarithmic depth. In a manner similar to the behaviour
of the sort algorithm quicksort, if the centre is chosen randomly among the left
endpoints, the performance will be similar in expectation.

Complexity
The construction of the tree takes time O(n log n), and the processing of a query
costs O(log n + m), where the logarithmic term is due to the binary search in the
sorted lists.

Implementation Details
In our implementation, the intervals are represented by n-tuples whose first two ele-
ments contain the endpoints of an interval. Other elements can be added to transport
supplementary information.

The binary search is done via the function bisect_right(t,x), which returns i

such that t[j ] > x if and only if j > i. Note that you should not loop in the array
by_high with the aid of the sublist selection by_high[i:], as the creation of the sublist
is linear in len(by_high), thus increasing the complexity to O(log n + n) instead of
O(log n+m), where m is the size of the list returned.

The arrays contain pairs (value, interval), thus we search with bisect_right the
insertion point of an element x of the form (p,(∞,∞)).
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class _Node:
def __init__(self, center, by_low, by_high, left, right):

self.center = center
self.by_low = by_low
self.by_high = by_high
self.left = left
self.right = right

def interval_tree(intervals):
if intervals == []:

return None
center = intervals[len(intervals) // 2][0]
L = []
R = []
C = []
for I in intervals:

if I[1] <= center:
L.append(I)

elif center < I[0]:
R.append(I)

else:
C.append(I)

by_low = sorted((I[0], I) for I in C)
by_high = sorted((I[1], I) for I in C)
IL = interval_tree(L)
IR = interval_tree(R)
return _Node(center, by_low, by_high, IL, IR)

def intervals_containing(t, p):
INF = float(’inf’)
if t is None:

return []
if p < t.center:

retval = intervals_containing(t.left, p)
j = bisect_right(t.by_low, (p, (INF, INF)))
for i in range(j):

retval.append(t.by_low[i][1])
else:

retval = intervals_containing(t.right, p)
i = bisect_right(t.by_high, (p, (INF, INF)))
for j in range(i, len(t.by_high)):

retval.append(t.by_high[j][1])
return retval

Variant
If the goal is only to determine the number of intervals containing a given value,
and not the list, then a much simpler solution exists with a sweep line algorithm. We
sweep the intervals contained in a node from left to right, advancing from one end to
the other. At any given moment, we maintain the number of intervals open (i.e. the
right endpoint has not yet been seen), and thus produce an array containing pairs of
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the form (x,k), such that for two successive pairs (x,k),(x′,k′), the number of intervals
containing p is k for x ≤ p < x′.

5.2 Union of Intervals

Definition
Given a set S of n intervals, we wish to determine their union, in the form of an ordered
list L of disjoint intervals, with the property

⋃
I∈S =

⋃
I∈L.

Algorithm
The complexity is O(n log n) using a sweep line algorithm. We sweep the endpoints
of the intervals from left to right. At any given moment, we maintain in nb_open the
number of intervals open (i.e. the right endpoint has not yet been seen). When this
number becomes zero, we add to the solution a new interval [last,x), where x is the
current position of the sweep line and last is the last sweep position where nb_open
became positive.

Implementation Details
Note the order in which the endpoints of the intervals are processed. This order is
correct when the intervals are closed or half-open. For open intervals, the end of the
interval (x,y) must be handled before the beginning of the interval (y,z).

def intervals_union(S):
E = [(low, -1) for (low, high) in S]
E += [(high, +1) for (low, high) in S]
nb_open = 0
last = None
retval = []
for x, _dir in sorted(E):

if _dir == -1:
if nb_open == 0:

last = x
nb_open += 1

else:
nb_open -= 1
if nb_open == 0:

retval.append((last, x))
return retval

5.3 The Interval Point Cover Problem

Application
We need to install a minimal number of antennas along a straight beach in order to
provide coverage to a number of small offshore islands (as small as individual points!).
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An antenna can cover all of the islands within a given radius r (too bad for islands
further out than r), which is the same for all the antennas.

Observation
The intersection of the beach with a circle of radius r drawn around an island defines
an interval on the beach that must contain an antenna. The problem thus reduces to the
following, see Figure 5.2.

Definition
For n given intervals, find a minimal set of points S such that each interval intersects S.

Algorithm
The complexity is O(n log n) using the sweep line technique. We process the intervals
in increasing order of their right endpoint. At every step, we maintain a solution S

for the intervals already seen, which minimises |S| and in case of equality maximises
max S.

The algorithm is simple. If for an interval [l,r] we have l ≤ max S, then we do
nothing, otherwise we add r to S. The idea is that in any case we must cover [l,r],
and by choosing the largest value that covers it, we increase the chance to additionally
cover subsequent intervals.

To be convinced of the optimality, let Sn be the solution constructed for the set of
intervals I1, . . . ,In already processed. Obviously, S1 is optimal for I1. Suppose Sn is
optimal, and consider In+1 = [l,r]. Either l ≤ max Sn, in which case Sn is already an
optimal solution for In+1, or l > max Sn, and |Sn+1| = |Sn| + 1. In the latter case,

sea
beach

Figure 5.2 How many antennas are needed to cover all the islands? This problem reduces to the
interval point cover problem.
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suppose S′n+1 is an optimal solution for I1, . . . ,In+1. Then S′n+1 \ {max S′n+1} must
cover I1, . . . ,In, and hence, by the optimality of Sn, |S′n+1| = |Sn| + 1 = |Sn+1|.

def interval_cover(I):
S = []
# sort by right endpoints
for start, end in sorted(I, key=lambda v: v[1]):

if not S or S[-1] < start:
S.append(end)

return S

Problem
Radar Installation [onlinejudge:1193]



6 Graphs

A graph is a combinatorial object composed of a set of vertices V (also known as
nodes) and a set of edges E. The edges correspond to pairs of vertices, which are
generally distinct, and without a notion of order in the sense where (u,v) and (v,u)
denote the same edge.

At times, we consider a variant, the directed graph, where the edges have an ori-
entation. In this case, the edges are usually known as arcs. The arc (u,v) has origin u

and destination v. Most of the algorithms described in this book operate on directed
graphs but can be applied to non-directed graphs by replacing each edge (u,v) by two
arcs (u,v) and (v,u).

Graphs can contain additional information, such as weights or letters, in the form
of labels on the vertices or the edges.

6.1 Encoding in Python

A simple manner to encode a graph is to identify the n vertices by the integers from
0 to n − 1. However, it is common to number the vertices starting from 1 when
displaying a graph, or when reading from an input file. Thus, remember to add or
subtract 1 from the indices when displaying or reading a graph.

0

1

2

3

# adjacency list
G = [[1,2],[0,2,3],[0,1],[1]]

# adjacency matrix
G = [[0,1,1,0],

[1,0,1,1],
[1,1,0,0],
[0,1,0,0]]

Figure 6.1 A graph and its possible encodings.
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The edges can essentially be represented in two manners, by adjacency list or by
adjacency matrix. The latter is sometimes simpler to implement but is more demand-
ing in memory: the graph is represented by a binary matrix E such that E[u,v] indi-
cates the existence of an arc (u,v), see Figure 6.1.

The representation by adjacency list consists of symbolising the graph by a list of
lists G. For a vertex u, G[u] is the list of neighbours of u. The vertices can also be
designated by a textual identifier, in which case G could be a dictionary whose keys
are strings and whose values are the lists of neighbours. For example, the triangle
composed of three vertices ’axel’, ’bill’ and ’carl’ would be encoded by the
following dictionary:

{’axel’: [’bill’,’carl’], ’bill’: [’axel’,’carl’], ’carl’: [’axel’,’bill’]}

The algorithms presented in this book generally work with adjacency lists.
In a directed graph, at times we require two structures G_out, G_in, containing the

arcs originating from and terminating on each vertex. However, rather than storing the
arc, we store the endpoints of the arcs. Hence, for each vertex u, G_out[u] contains
the list of vertices v for each outgoing arc (u,v) and G_in[u] the list of vertices v for
each incoming arc (v,u).

A simple way to store labels on the vertices and the edges is to use complementary
arrays indexed by the vertices or matrices indexed by pairs of vertices. In this way
the structure of the encoding of the graph G itself is not affected, and G can be
used without modification in the portions of the code that are not concerned with the
labels.

Certain implementations of graph algorithms require the vertices to be simply
the integers between 0 and n − 1, whereas at times the vertices need to be iden-
tified by a name or by a more complex but immutable object, such as a string
or an n-tuple of integers. To provide an interface between these code fragments,
a small class can be written, translating between the index of a vertex and the
complex object that it represents. Such a class would contain a dictionary name2node
relating the name of a vertex to its index, and an array node2name providing
the inverse function. If G is an instance of the class Graph, then the expression
len(G) should return the number of its vertices and G[u] the adjacency list of
the vertex with index u. Then the class behaves exactly like an adjacency list,
and in addition allows vertices and edges to be added using the names of the
vertices.
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class Graph:
def __init__(self):

self.neighbors = []
self.name2node = {}
self.node2name = []
self.weight = []

def __len__(self):
return len(self.node2name)

def __getitem__(self, v):
return self.neighbors[v]

def add_node(self, name):
assert name not in self.name2node
self.name2node[name] = len(self.name2node)
self.node2name.append(name)
self.neighbors.append([])
self.weight.append({})
return self.name2node[name]

def add_edge(self, name_u, name_v, weight_uv=None):
self.add_arc(name_u, name_v, weight_uv)
self.add_arc(name_v, name_u, weight_uv)

def add_arc(self, name_u, name_v, weight_uv=None):
u = self.name2node[name_u]
v = self.name2node[name_v]
self.neighbors[u].append(v)
self.weight[u][v] = weight_uv

6.2 Implicit Graphs

At times, the graph is given implicitly, for example, in the form of a grid, where the
vertices are the cells of the grid and the edges correspond to the adjacent cells, as in a
labyrinth. Another example of a graph given implicitly is with combinatorial objects,
where an arc corresponds to a local modification.

Example: Rush Hour

Rush Hour is a commercially available puzzle. The playing board is a 6× 6 grid, see
Figure 6.2. Cars (of length 2) and trucks (of length 3) are placed on the grid, without
overlapping and without going outside the boundary of the grid. A specific car is
marked in darker shade, and the goal is for it to exit the grid via the unique opening
on the boundary. For this, it is possible to move the vehicles forwards or backwards.

The modelisation with a graph is straightforward. The data for each of the k vehicles
includes a fixed part and a variable part. The fixed part includes the size, the orientation
and the fixed coordinate (for example, the column for a vehicle oriented vertically).
The variable part consists of the free coordinate. The vector of all these coordinates
completely encodes a configuration of the grid. The key of an exploration of this graph
is a function, which from a given configuration vector enumerates all the configuration
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E
xi

t
Figure 6.2 A configuration of the game Rush Hour.

vectors reachable in one move. The encoding of the configuration given in Figure 6.2
is the following.

orient = [1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0] # 0 = horizontal, 1 = vertical
length = [2, 3, 3, 3, 2, 2, 2, 2, 3, 2, 2] # 2 = car, 3 = truck
coofix = [0, 0, 4, 1, 2, 2, 3, 3, 4, 5, 5]
coovar = [0, 1, 0, 1, 0, 2, 2, 4, 2, 4, 3]
red = 4 # index of red car

For example, if orient[i] = 0, then the vehicle i occupies all the cells (x,y) for
coovar[i] ≤ x < coovar[i] + length[i] and y = coofix[i]. If orient[i] = 1, then
the vehicle i occupies all the cells (x,y) for x = coofix[i] and coovar[i] ≤ y <

coovar[i]+ length[i].

Problem
Ricochet Robots [kattis:ricochetrobots]

6.3 Depth-First Search—DFS

Definition
Depth-first search is an exploration of a graph that begins at a given vertex and
recursively explores its neighbours.

Complexity
The complexity in time is O(|V | + |E|).

Application
The principal application is to discover all the nodes accessible starting from a given
vertex of a graph. This technique is the basis for several algorithms that we will tackle
further on, such as the detection of biconnected components or topological sort, see
Sections 6.6 on page 97 and 6.7 on page 102.

Implementation Details
In order to avoid repeatedly exploring the neighbours of a vertex, we mark the vertices
already visited, using a Boolean array.
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def dfs_recursive(graph, node, seen):
seen[node] = True
for neighbor in graph[node]:

if not seen[neighbor]:
dfs_recursive(graph, neighbor, seen)

Improved Implementation
The above recursive implementation cannot handle very large graphs, as the call
stack is limited. In Python, the function setrecursionlimit allows this limit to be
somewhat exceeded, but, in general, to not more than a depth of some thousands of
recursive calls. To overcome this problem and for better efficiency, we propose an iter-
ative implementation. The stack to_visit contains the vertices discovered but not yet
processed.

def dfs_iterative(graph, start, seen):
seen[start] = True
to_visit = [start]
while to_visit:

node = to_visit.pop()
for neighbor in graph[node]:

if not seen[neighbor]:
seen[neighbor] = True
to_visit.append(neighbor)

The Case of a Grid
Consider a grid where certain cells can be visited (marked by the character ‘.’) and
certain cannot be (marked by ‘#’), as in a labyrinth. From any given cell, we can
attempt to visit the four neighbouring cells, except for those on the boundary, which
have fewer neighbours. In the following implementation, we use the grid itself to
mark the visited cells with the letter X. To simplify readability, the recursive traversal
is presented.

def dfs_grid(grid, i, j, mark=’X’, free=’.’):
height = len(grid)
width = len(grid[0])
to_visit = [(i, j)]
grid[i][j] = mark
while to_visit:

i1, j1 = to_visit.pop()
for i2, j2 in [(i1 + 1, j1), (i1, j1 + 1),

(i1 - 1, j1), (i1, j1 - 1)]:
if (0 <= i2 < height and 0 <= j2 < width and

grid[i2][j2] == free):
grid[i2][j2] = mark # mark path
to_visit.append((i2, j2))

Problems
ABC Path [spoj:ABCPATH]
A Bug’s Life [spoj:BUGLIFE]
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6.4 Breadth-First Search—BFS

Definition
Rather than exploring as far as possible starting from the current node (depth-first
search), we can enumerate the nodes of a graph by their increasing distance from an
initial node (breadth-first search, abbreviated BFS).

Key Observation
We must process the nodes by increasing distance from an initial node, hence we need
a data structure to efficiently maintain this order. A queue is a good choice: if for every
vertex extracted from the head of the queue we add its neighbours to the end of the
queue, it is easy to see that at a given moment, it only contains nodes at a distance d

at the head and d + 1 at the tail, since as long as vertices at distance d remain at the
head, there can only be vertices at distance d + 1 added to the queue.

Algorithm in Linear Time O(|V | + |E|)
Breadth-first traversal has the same structure as the iterative depth-first traversal,
except that we use a queue instead of a stack. Another difference is that the vertices
are marked at the moment when they are added to the queue and not when they are
removed, otherwise the time would be quadratic.

Implementation Details
The principal interest of breadth-first traversal is to determine the distances away from
a given starting node in a non-weighted graph. Our implementation computes these
distances as well as the predecessors in the shortest path tree. The array of distances
is also used to mark the vertices visited.

from collections import deque

def bfs(graph, start=0):
to_visit = deque()
dist = [float(’inf’)] * len(graph)
prec = [None] * len(graph)
dist[start] = 0
to_visit.appendleft(start)
while to_visit: # an empty queue is considered False

node = to_visit.pop()
for neighbor in graph[node]:

if dist[neighbor] == float(’inf’):
dist[neighbor] = dist[node] + 1
prec[neighbor] = node
to_visit.appendleft(neighbor)

return dist, prec

Problem
Hike on a Graph [spoj:HIKE] Prime Path [spoj:PPATH]
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Example: Prime Path
Consider the set S of prime numbers that can be written with exactly four digits, where
the leading digit is different from zero. Two numbers in S are said to be neighbours
if they differ by exactly one digit. Given two numbers x,y in S, we wish to find the
shortest sequence z0,z1, . . . ,zk in S with z0 = x, zk = y and for every 1 ≤ i ≤ k, zi−1

and zi are neighbours. For this problem, it suffices to generate the set S with the Sieve
of Eratosthenes (see Section 14.5 on page 217), and to construct for each number in
S the set of its neighbours, by testing the presence in S of its at most 4 × 9 potential
neighbours. Then, a breadth-first traversal of the graph reveals a shortest path between
two given numbers.

6.5 Connected Components

Definition
A subset A ⊂ V of a graph is called a connected component if for every pair of
vertices u,v in A, there exists a path from u to v. We could, for example, wish to know
the number of connected components of a graph. A graph is said to be connected if it
has exactly one connected component.

Algorithm by Depth-First Search
A depth-first traversal starting at a vertex u explores all vertices reachable from u, and
only these, thus exactly the connected component containing u. We use the index of
the current component as the visit marker.

def dfs_grid(grid, i, j, mark, free):
grid[i][j] = mark
height = len(grid)
width = len(grid[0])
for ni, nj in [(i + 1, j), (i, j + 1), # 4-neighborhood

(i - 1, j), (i, j - 1)]:
if 0 <= ni < height and 0 <= nj < width:

if grid[ni][nj] == free:
dfs_grid(grid, ni, nj, mark, free)

Application
Consider a photo taken from above of a die on a table. We would like to easily
determine the number of pips on the exposed face. For this, we posterise1 the image
with a greyscale threshold to obtain an image in black and white, so that each pip
corresponds to a connected component in the image, see Figure 6.3.

Figure 6.4 shows the logo of the British electronic music group Clean Bandit in
ASCII art. It can be seen as a graph on a grid whose vertices are the sharps and two

1 I.e. we reduce the number of colours.
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Figure 6.3 A photo of a die and its posterised image.

vertices are linked by an edge if and only if they touch, horizontally or vertically. This
graph is made up of four connected components.
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Figure 6.4 The state of the grid before and after the execution of the algorithm on the graph of
Clean Bandit.

We execute as many depth-first searches as there are connected components. We
sweep the grid from top to bottom and from left to right. As soon as a cell containing
a sharp is found, we know that we are dealing with a new connected component and a
depth-first search is launched from this cell to determine it completely.

def nb_connected_components_grid(grid, free=’#’):
nb_components = 0
height = len(grid)
width = len(grid[0])
for i in range(height):

for j in range(width):
if grid[i][j] == free:

nb_components += 1
dfs_grid(grid, i, j, str(nb_components), free)

return nb_components

Each cell containing a sharp is visited only once, so the algorithm is O(|V |), i.e. it
is linear in the number of vertices.
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Algorithm with the Structure Union-Find
As the graph is undirected, the relation ‘there exists a path between u and v’ is an
equivalence relation. Thus, the connected components are exactly the equivalence
classes for this relation, and union-find is a suitable structure to represent our problem,
see Section 1.5.5 on page 26.

Complexity
The complexity of this method is slightly worse than that of our first approach;
nevertheless, it becomes necessary when we have a graph whose number of edges
evolves in time and we wish to know at each moment the number of connected
components.

def nb_connected_components(graph):
n = len(graph)
uf = UnionFind(n)
nb_components = n
for node in range(n):

for neighbor in graph[node]:
if uf.union(node, neighbor):

nb_components -= 1
return nb_components

Application to the Disconnection of a Graph
Given a graph whose edges disappear progressively with time, i.e. there is a sequence
e1, . . . ,e|E| of edges such that ei disappears at time i, we wish to determine the first
instant at which the graph becomes disconnected.

We begin with the graph without edges at time t = |E| (which thus contains |V |
connected components). Working backwards from e|E|, at each step we add an edge
from the sequence and check to see if the number of components has evolved. As
soon as the number of components reaches 1, we know the graph is connected, by
definition, and t + 1 is the value we seek.

Problems
The Ant [spoj:ANTTT]
Lego [spoj:LEGO]
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6.6 Biconnected Components

Input

Output

Application
Given a graph with costs of sabotage for each vertex and each edge, we wish to
determine a unique vertex or a unique edge of minimal cost which disconnects
the graph. Note the difference with the problem of finding a minimal set of edges
which disconnect the graph, the minimum cut problem, described in Section 9.8 on
page 162.

Definition
Let G be an undirected connected graph.

• A cut vertex—also called an articulation point—is a vertex whose suppression
disconnects the graph.

• A cut edge—also called a bridge—is an edge whose deletion disconnects the graph,
see Figure 6.5.

• A biconnected component is a maximal set of edges, such that within the induced
graph (restrained to this set of edges and the incident vertices) neither cut vertices
nor cut edges exists.

• The edges that are not bridges can be partitioned into biconnected components.
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Figure 6.5 An edge between two cut vertices (vertices shown in bold) is not always a cut edge
and the endpoints of a cut edge (edges shown in bold) are not always cut vertices.

A biconnected component S also has the property that for every pair of vertices
s,t ∈ S two paths from s to t exist, which pass by distinct vertices. Note that the
biconnected components are defined by a partition of the edges and not by a partition
of the vertices. Indeed, a vertex can belong to several biconnected components, see
vertex 5 in Figure 6.8.

Given an undirected graph, the goal is to decompose it into biconnected
components.

Complexity
Linear by a depth-first traversal (see Hopcroft and Tarjan, 1973).

Details of the Depth-First Search
In a previous section, we described a depth-first traversal (DFS) of a graph. We will
now add supplementary information to the vertices and the edges. First of all, the
vertices are numbered in the order of their processing. The array dfs_num contains
this information.

A non-directed graph can be represented as a directed graph by the generation of
two arcs for each edge. The DFS traversal explores the arcs of the graph, classified as
follows (see Figures 6.6 and 6.7). An arc (u,v) is:

• a tree arc if v is seen for the first time during the processing of u. These arcs form
a spanning tree constructed by the traversal, also known as the DFS tree;

• an inverse tree arc if (v,u) is a tree arc;

• a back arc if v has already been seen and is an ancestor of u in the DFS tree;

• a forward arc if v has already been seen and is a descendant of u in the DFS tree.

For a depth-first traversal of a directed graph, an additional type of arc exists, a
cross arc, which goes to a vertex already seen, but is neither ancestor nor descen-
dant. As in this section we only consider non-directed graphs, we can ignore this
type of arc.
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Determination of the Type of an Arc
The type of an arc is easy to determine by comparing the values dfs_num of its
endpoints. More precisely, in addition to dfs_num[v] for each vertex v, we com-
pute a value dfs_low[v], crucial for the algorithm. It is defined as the minimum of
dfs_num[u] over all the back arcs (w,u) where w is a descendant of v. The minimum
is thus taken over the vertices u that can be reached from v by a sequence of tree
arcs (that can be empty) followed by a back arc. If there is no such vertex, we set
dfs_low[u] = ∞.
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Figure 6.6 The classification of the arcs during a DFS traversal.
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Figure 6.7 The vertices are labelled by the number in their order of processing, stored in
dfs_num. The line style is solid for tree arcs, in dashes for back arcs and in dots for forward
arcs. For every tree arc (u,v) an inverse tree arc exists (v,u), not shown for readability.
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Key Observation
The values of dfs_low allow us to determine the cut vertices and edges.

1. A vertex u at the root of the DFS tree is a cut vertex if and only if it has at least
two children in the tree.
Note that each child v satisfies dfs_low[v] ≥ dfs_num[u].

2. A vertex u which is not the root is a cut vertex if and only if it has at least one
child v with dfs_low[v] ≥ dfs_num[u].

3. An edge (u,v)—up to a swap of u and v—is a cut edge if and only if (u,v) is a
tree arc and dfs_low[u] ≥ dfs_num[v].

1/∞ 2/1

3/14/1

5/2

6/5

7/5

8/5 9/∞

10/9 11/9

Figure 6.8 The vertices are labelled with dfs_num followed by dfs_low. The cut vertices and
edge are highlighted in bold.

To determine the biconnected components, it thus suffices to apply the above defini-
tions in order to detect when a new biconnected component starts.

Implementation Details
The array parent contains the predecessor in the DFS tree of each vertex and also
allows the identification of the roots of the DFS trees. For each vertex u, we count in
critical_children[u] the number of children v in the tree such that dfs_low[v] ≥
dfs_num[u]. This information allows us at the end of the traversal to determine the
cut vertices and edges. The value dfs_low[v] is updated for every back arc detected
emanating from v. At the end of the process, this value is propagated up to the parent
vertex in the DFS tree.
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# to ease readiness, variables do not have dfs_ prefix
def cut_nodes_edges(graph):

n = len(graph)
time = 0
num = [None] * n
low = [n] * n
parent = [None] * n # parent[v] = None if root else parent of v
critical_children = [0] * n # cc[u] = #{children v | low[v] >= num[u]}
times_seen = [-1] * n
for start in range(n):

if times_seen[start] == -1: # init DFS path
times_seen[start] = 0
to_visit = [start]
while to_visit:

node = to_visit[-1]
if times_seen[node] == 0: # start processing

num[node] = time
time += 1
low[node] = float(’inf’)

children = graph[node]
if times_seen[node] == len(children): # end processing

to_visit.pop()
up = parent[node] # propagate low to parent
if up is not None:

low[up] = min(low[up], low[node])
if low[node] >= num[up]:

critical_children[up] += 1
else:

child = children[times_seen[node]] # next arrow
times_seen[node] += 1
if times_seen[child] == -1: # not visited yet

parent[child] = node # link arrow
times_seen[child] = 0
to_visit.append(child) # (below) back arrow

elif num[child] < num[node] and parent[node] != child:
low[node] = min(low[node], num[child])

cut_edges = []
cut_nodes = [] # extract solution
for node in range(n):

if parent[node] is None: # characteristics
if critical_children[node] >= 2:

cut_nodes.append(node)
else: # internal nodes

if critical_children[node] >= 1:
cut_nodes.append(node)

if low[node] >= num[node]:
cut_edges.append((parent[node], node))

return cut_nodes, cut_edges

Problem
Police Query [spoj:POLQUERY]
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6.7 Topological Sort

3

1
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4 3 1 5 4 2

Input Output

Definition
Given a directed graph G(V,A), we want to order the vertices according to a rank
function r in such a way that for every arc (u,v), we have r(u) < r(v).

Application
The graph could represent a set of tasks where the arcs encode the dependencies
u → v ⇔ ‘u must be executed before v’. We are interested in an execution order
compatible with the dependencies.

First of all, a few remarks:

• Several topological sorts for a given graph can exist. For example, if the sequence
s is a topological sort of G1 and the sequence t a topological sort of G2, then, for
example, the sequences st and ts are topological sorts of the graph formed by the
union of G1 and G2.

• A graph containing a cycle never admits a topological sort: each vertex of a cycle
would require the prior processing of all the others before it (including itself!).

• A graph without cycles admits a topological sort. See below.

Complexity
The execution time is linear in the size of the input.

Algorithm with a DFS Traversal
If we process each node only after all its neighbouring descendants, then we obtain an
inverse topological order. Indeed, if u → v is a dependency, then:

• either v was seen before u, in which case v was already handled (if not, this would
mean that u is accessible from v, hence the graph contains a cycle) and the inverse
topological order is respected;

• or v is reached from u, in which case u will be handled after v, hence the inverse
topological order is again respected.

The DFS traversal described previously must be adapted, as it does not allow
determination of when the processing of a vertex is complete.
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The following implementation uses an array seen, which is set to−1 for all vertices
that have not yet been seen, and then to the number of direct descendants that have
already been seen. When this counter is equal to the number of children of the node,
then the processing of the node is finished, and the node is added to the sequence
order. This sequence contains an inverse topological order, which must be reversed at
the end of the algorithm.

def topological_order_dfs(graph):
n = len(graph)
order = []
times_seen = [-1] * n
for start in range(n):

if times_seen[start] == -1:
times_seen[start] = 0
to_visit = [start]
while to_visit:

node = to_visit[-1]
children = graph[node]
if times_seen[node] == len(children):

to_visit.pop()
order.append(node)

else:
child = children[times_seen[node]]
times_seen[node] += 1
if times_seen[child] == -1:

times_seen[child] = 0
to_visit.append(child)

return order[::-1]

Greedy Algorithm
An alternative solution is based on the input degree of the vertices. Consider an acyclic
graph. Intuitively, we can begin by adding to the solution sequence the nodes without
predecessors in an arbitrary order, trimming them from the graph, then adding to
the sequence the new nodes without predecessors in an arbitrary order, and so on.
This process terminates because an acyclic graph always contains a vertex without
predecessors, and the deletion of nodes preserves the absence of cycles.

def topological_order(graph):
V = range(len(graph))
indeg = [0 for _ in V]
for node in V: # compute indegree

for neighbor in graph[node]:
indeg[neighbor] += 1

Q = [node for node in V if indeg[node] == 0]
order = []
while Q:

node = Q.pop() # node without incoming arrows
order.append(node)
for neighbor in graph[node]:

indeg[neighbor] -= 1
if indeg[neighbor] == 0:

Q.append(neighbor)
return order
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Applications
Given an acyclic graph and two vertices s,t , we might like to count the number of
paths from s to t , or discover the longest path when there are weights on the arcs.
A solution in linear time consists of performing a topological sort and executing a
dynamic program on the nodes in that order.

For example, the dynamic program P [s] = 0,P [v] = 1 + maxu P [u] computes
the longest path from s to t where the maximisation is made over all the arcs (u,v)
terminating on v.

Problems
Topological Sorting [spoj:TOPOSORT]
Project File Dependencies [spoj:PFDEP]

Example: All Disks Considered [spoj:ALL]
The packages of a GNU/Linux distribution are stored on two DVDs. There is a depen-
dency order between packages: each given package can be installed only after the
installation of a certain set of prerequisite packages. We want to find an order for
the installation of the packages that respects the dependencies while minimising the
number of reloads of DVDs in the single DVD reader of the machine being installed.

Formally, we are given a directed graph without cycles whose vertices are coloured
white or black (white corresponds to packages on one of the DVDs, and black to those
on the other). This graph defines a partial order. The graph does not necessarily contain
transitive arcs: we can have (u,v) and (v,w) without (u,w). The goal is to produce a
total order minimizing the number of colour changes along this ordering. This can be
done in linear time. Essentially, we proceed as for a topological sort, but seeking at
each step to avoid colour changes. We can show with an exchange argument that the
solution thus produced is optimal.

A package p is said to be accessible if all the packages on which p depends
are already installed. The algorithm maintains two sets, the first containing all the
white accessible packages and the second containing all the black accessible packages.
To quickly determine when a package becomes accessible, the algorithm keeps a
counter for each package p. This counter keeps track of the number of packages
not yet installed on which p depends. Initially, the sets contain all the packages with
no dependencies, whose counters are thus 0. Then, the algorithm selects an initial
colour c. Two executions are thus necessary to determine the best choice. The solution
will be in the form of a sequence of vertices.

The algorithm starts with an empty sequence. As long as at least one of the sets is
non-empty, the algorithm performs the following steps. If the current colour set c is
empty, the algorithm switches c over to the other colour. It then extracts a package p

from the colour c set and appends it to the solution. Then, it decrements the counters of
all the packages q depending on p. The packages q which become accessible (whose
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counters become 0) are added to the set of their colour. The algorithm is in linear time,
as the work carried out on each arc is in constant time.

6.8 Strongly Connected Components

Definition
A subset A ⊂ V of a directed graph is called a strongly connected component if for
every pair (u,v) of vertices of A a path in A exists that links u to v. Note that in this
case, a path in A exists that links v to u, see Figure 6.9.

Figure 6.9 An example of the partition of a graph into strongly connected components.

Observation
The component (or reduced) graph is defined as the result of the contraction of the
strongly connected components into ‘super vertices’. This graph is acyclic, as each
cycle of a directed graph is included in exactly one strongly connected component.

Complexity
The following algorithms execute in linear time in the size of the graph (|V | + |E|).

Tarjan’s Algorithm
Tarjan’s algorithm (1972) consists of a single depth-first search, numbering the ver-
tices in the order of the beginning of their processing. It also places the vertices
encountered into a stack waiting of nodes waiting to be grouped in a strongly con-
nected component. Once a component is detected, it is trimmed from the graph and
removed from the stack waiting. This means that all the arcs entering into an already
discovered component are ignored.

A depth-first search enters into a component C by a first vertex v0, and then explores
all the vertices and eventually also the components reachable from C. Vertex v0 is
processed after all its descendants in the DFS tree. By construction, at the moment of
the final processing of v0, clearly the stack waiting contains above v0 all the vertices
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of C. The vertex v0 is known as the representative of C. The vertices are numbered by
their order of processing, hence the representative of C has the smallest such number.
All the difficulty lies in determining the representative of a component.

For this, the algorithm computes two values for each vertex v, the order num-
ber dfs_num[v], attributed at the beginning of the processing of the vertex, and
dfs_min[v]. The latter value is defined as the minimum of dfs_num[u] over all the
vertices u that are not already in a strongly connected component—and hence still
waiting—and reachable from v by a sequence of tree arcs, eventually followed by a
single back arc. This value is defined as follows, where the minimum is taken over all
outgoing arcs (v,u):

dfs_min[v] := min
u

⎧⎨
⎩

dfs_num[v]
dfs_min[u] if (v,u) is a tree arc
dfs_num[u] if (v,u) is a back arc

Note that this value differs from the value dfs_low[v] described in Section 6.6 on
page 97, where there was no notion of waiting vertices and where dfs_low[v] could
take on the value∞.

Consider the case of a component C without any outgoing arcs, and a vertex v ∈ C.
Let A be the DFS subtree with root v, and suppose that a back arc exists that leaves A

towards a vertex u, predecessor of v. As C does not have any outgoing arcs, u must
belong to C and v is not the representative of C. In this case, we have dfs_min[v]
< dfs_num[v]. If a back arc leaving A does not exist, then it contains a strongly
connected component, and since it is included in C, this tree covers C, and v is its
representative. This situation is detected by dfs_min[v] == dfs_num[v].

Implementation Details
In parallel with the stack waiting, the algorithm maintains a Boolean array waits,
which allows the presence in the stack to be tested in constant time. This way, it is
easy to trim a component by setting the corresponding elements to False.

The algorithm returns a list of lists, each containing the vertices of one of
the components. Note that the components are determined in reverse topological
order. This will be useful when we come to the resolution of a 2-SAT formula
later on.
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def tarjan_recursif(graph):
global sccp, waiting, dfs_time, dfs_num
sccp = []
waiting = []
waits = [False] * len(graph)
dfs_time = 0
dfs_num = [None] * len(graph)

def dfs(node):
global sccp, waiting, dfs_time, dfs_num
waiting.append(node) # new node is waiting
waits[node] = True
dfs_num[node] = dfs_time # mark visit
dfs_time += 1
dfs_min = dfs_num[node] # compute dfs_min
for neighbor in graph[node]:

if dfs_num[neighbor] is None:
dfs_min = min(dfs_min, dfs(neighbor))

elif waits[neighbor] and dfs_min > dfs_num[neighbor]:
dfs_min = dfs_num[neighbor]

if dfs_min == dfs_num[node]: # representative of a component
sccp.append([]) # make a component
while True: # add waiting nodes

u = waiting.pop()
waits[u] = False
sccp[-1].append(u)
if u == node: # until representative

break
return dfs_min

for node in range(len(graph)):
if dfs_num[node] is None:

dfs(node)
return sccp

Iterative Version
The iterative version of the algorithm is required for very large graphs, larger than,
say, 100,000 vertices. Here, a counter times_seen allows us at the same time to
mark the vertices encountered and to memorise the number of neighbours already
considered.
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def tarjan(graph):
n = len(graph)
dfs_num = [None] * n
dfs_min = [n] * n
waiting = []
waits = [False] * n # invariant: waits[v] iff v in waiting
sccp = [] # list of detected components
dfs_time = 0
times_seen = [-1] * n
for start in range(n):

if times_seen[start] == -1: # initiate path
times_seen[start] = 0
to_visit = [start]
while to_visit:

node = to_visit[-1] # top of stack
if times_seen[node] == 0: # start process

dfs_num[node] = dfs_time
dfs_min[node] = dfs_time
dfs_time += 1
waiting.append(node)
waits[node] = True

children = graph[node]
if times_seen[node] == len(children): # end of process

to_visit.pop() # remove from stack
dfs_min[node] = dfs_num[node] # compute dfs_min
for child in children:

if waits[child] and dfs_min[child] < dfs_min[node]:
dfs_min[node] = dfs_min[child]

if dfs_min[node] == dfs_num[node]: # representative
component = [] # make component
while True: # add nodes

u = waiting.pop()
waits[u] = False
component.append(u)
if u == node: # until repr.

break
sccp.append(component)

else:
child = children[times_seen[node]]
times_seen[node] += 1
if times_seen[child] == -1: # not visited yet

times_seen[child] = 0
to_visit.append(child)

return sccp

Kosaraju’s Algorithm
A different algorithm was proposed by Kosaraju (1979). Its complexity is also linear,
and in practice quite comparable to Tarjan’s algorithm; however, it is perhaps easier
to understand.

The principle consists in performing a first depth-first search, and then a sec-
ond on the graph with the orientation of the arcs reversed. Formally, denote AT :=
{(v,u)|(u,v) ∈ A} the result of the reversal of the arcs. The algorithm is then composed
of the following steps:
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1. Perform a depth-first search of G(V,A) and store as f [v] the time of the
completion of processing of the vertex v.

2. Perform a depth-first search of G(V,AT ), selecting roots v in order of decreasing
f [v].

Each tree encountered in the second traversal is a strongly connected component.
The validity of the algorithm is based on the idea that if we associate with each

strongly connected component C the integer F (C) := maxu∈C fu, then F gives
a topological order on the graph induced by the strongly connected components in
G(V,AT ). Hence, each tree generated by the second traversal remains in the interior
of a component, since the only outgoing arcs lead to components already traversed.

Implementation Details
The list sccp (for strongly connected component) contains the list of strongly con-
nected components.

def kosaraju_dfs(graph, nodes, order, sccp):
times_seen = [-1] * len(graph)
for start in nodes:

if times_seen[start] == -1: # initiate DFS
to_visit = [start]
times_seen[start] = 0
sccp.append([start])
while to_visit:

node = to_visit[-1]
children = graph[node]
if times_seen[node] == len(children): # end of process

to_visit.pop()
order.append(node)

else:
child = children[times_seen[node]]
times_seen[node] += 1
if times_seen[child] == -1: # new node

times_seen[child] = 0
to_visit.append(child)
sccp[-1].append(child)

def reverse(graph):
rev_graph = [[] for node in graph]
for node, _ in enumerate(graph):

for neighbor in graph[node]:
rev_graph[neighbor].append(node)

return rev_graph

def kosaraju(graph):
n = len(graph)
order = []
sccp = []
kosaraju_dfs(graph, range(n), order, [])
kosaraju_dfs(reverse(graph), order[::-1], [], sccp)
return sccp[::-1] # follow inverse topological order
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Problem
Capital City [spoj:CAPCITY]

6.9 2-Satisfiability

Many decision problems can be modelled as a problem of satisfiability of a Boolean
formula. The satisfiability problem is the following.

Definition
We are given n Boolean variables. A literal is a variable or the negation of a variable.
A clause is a disjunction (OR) of several literals, so that a clause is satisfied (i.e. , made
true) if at least one of its literals is true. A formula is a conjunction (AND) of several
clauses, so that a formula is satisfied if all its clauses are satisfied. The goal is to see
whether there exists an assignment to the variables that satisfies the formula.

A formula is said to be of class 2-SAT if each clause contains at most two literals.
One of the fundamental results in complexity theory is that we can verify in linear
time if a 2-SAT formula is satisfiable, whereas in general (for a 3-SAT formula, for
example), in the worst case, a polynomial time algorithm is not known (it is NP-hard).

a b c

a cb

⎧⎪⎪⎨
⎪⎪⎩

a ∨ b

b ∨ c

a ∨ c

a ∨ c.

Figure 6.10 Graph obtained from an instance of 2-SAT. There are two strongly connected
components. The bottom one points to the top one, hence assigning ‘False’ to all the literals on
the bottom and ‘True’ to all on top will satisfy this formula.

Complexity
The complexity is linear, i.e. time O(n+m) for n and m the number of variables and
clauses (see Aspvall et al., 1979).

Modelisation by a Directed Graph
The disjunction of two literals x ∨ y is equivalent to the implication x ⇒ y or
y ⇒ x. We associate with a 2-SAT formula an implication graph, where the vertices
correspond to the literals, and the arcs correspond to the implications, equivalent to
the clauses, see Figure 6.10. This graph presents a high degree of symmetry.
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Key Observation
We can easily show that a 2-SAT formula is not satisfiable if for some x there is a path
from x to x and a path from x to x in the implication graph. What is surprising is that
the converse is also true!

As the implications are transitive, clearly if x ⇒ x ⇒ x is implied by the formula,
then it cannot be satisfied, since each of the assignments x = False or x = True
leads to a contradiction False ⇒ True. Conversely, suppose that each variable is in
a different strongly connected component from its negation.

As the directed graph is symmetric, we can consider pairs of strongly connected
components, where each contains all the negations of literals of the other. More-
over, all the literals of a strongly connected component must have the same Boolean
value. From this graph, it is thus possible to determine an assignment satisfying the
formula: it suffices to assign True to all the literals of a component without any
outgoing arcs. There is forcibly one, as the component graph is acyclic. Then we
assign False to the opposing component, trim the two components from the graph and
recurse.

To perform this efficiently, note that the algorithm presented previously to deter-
mine the strongly connected components finds them in reverse topological order. It
thus suffices to traverse the components in this order, assign True to each component
that does not yet have a value and assign False to the opposite component.

Implementation Details
We encode the literals by integers, such that +1, . . . , + n encode the n variables
and −1, . . . , − n encode their negations. A clause is encoded by a pair of inte-
gers and a formula as a list of clauses. Each literal corresponds to one of the 2n

nodes of the associated directed graph. These nodes are numbered from 0 to 2n − 1,
where 2i encodes the variable xi+1 and 2i + 1 encodes xi+1. Here is the correspond-
ing code.
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def _vertex(lit): # integer encoding of a litteral
if lit > 0:

return 2 * (lit - 1)
return 2 * (-lit - 1) + 1

def two_sat(formula):
# num_variables is the number of variables
num_variables = max(abs(clause[p])

for p in (0, 1) for clause in formula)
graph = [[] for node in range(2 * num_variables)]
for x_idx, y_idx in formula: # x_idx or y_idx

graph[_vertex(-x_idx)].append(_vertex(y_idx)) # -x_idx => y_idx
graph[_vertex(-y_idx)].append(_vertex(x_idx)) # -y_idx => x_idx

sccp = tarjan(graph)
comp_id = [None] * (2 * num_variables) # each node’s component ID
assignment = [None] * (2 * num_variables)
for component in sccp:

rep = min(component) # representative of the component
for vtx in component:

comp_id[vtx] = rep
if assignment[vtx] is None:

assignment[vtx] = True
assignment[vtx ^ 1] = False # complementary literal

for i in range(num_variables):
if comp_id[2 * i] == comp_id[2 * i + 1]:

return None # insatisfiable formula
return assignment[::2]

Problems
Manhattan [kattis:manhattan]
Soldiers on Parade [spoj:SOPARADE]



7 Cycles in Graphs

Several classic problems concern cycles in graphs, whether they refer to geographical
displacements or to anomalies in a dependency graph. The simplest problems consist
of detecting the existence of cycles, the existence of cycles with negative weight or
the identification of a minimal total weight or minimal mean weight cycle.

Other problems are concerned with exploring the whole of a graph to find paths
traversing each edge exactly once (Eulerian path) or, when this is not possible, at least
once (Chinese postman problem). These problems are polynomial, whereas determin-
ing a cycle that visits each vertex exactly once (Hamiltonian cycle) is NP-hard.

Search Algorithms for Cycles

detection of a cycle O(|V | + |E|) depth-first search
cycle of minimal total weight O(|V | · |E|) Bellman-Ford
cycle of minimal mean weight O(|V | · |E|) Karp
cycle of minimal cost-to-time ratio O(|V | · |E| · log

∑
t) binary search

Eulerian path O(|V | + |E|) greedy
Chinese postman cycle O(

√|V | · |E|) minimal weigh perfect pairing
travelling salesman O(|V |2|V |) dynamic programming

7.1 Eulerian Tour

1

2

3

4

5

6

7

8

Input Output

Application
You are in Kaliningrad—formerly Königsberg—and want to know if it is possible to
take a walk that crosses each bridge exactly once and finishes back at the starting
point. It is this situation that led Leonhard Euler to study the problem in 1759.
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Definition
Given a connected graph G(V,E) such that each vertex has even degree, we wish to
find a cycle in this graph that traverses each edge exactly once. The same problem can
be posed for directed and strongly connected graphs such that the out-degree of each
vertex is equal to its in-degree.

Algorithm in Linear Time
A graph possesses an Eulerian cycle if and only if it is connected and every vertex
is of even degree. This was shown by Euler in 1736. Similarly, a directed graph has
an Eulerian cycle if and only if it is strongly connected and each vertex has the same
in-degree and out-degree.

How do we find such a cycle? In 1873, Hierholzer and Wiener proposed the follow-
ing algorithm. Take an arbitrary vertex v and start walking from v while marking the
edges traversed as forbidden. The choice of edges taken can be arbitrary. This walk
forcibly returns to the vertex v. This follows from the fact that the endpoints of the
excursion are the only vertices incident to an odd number of allowed edges. The result
is a cycle C that possibly only covers a portion of the graph. In this case, as the graph
is connected, a vertex v′ ∈ C exists that still has allowed edges. We then start a new
walk from v′ and insert into C the cycle thus obtained. The procedure is repeated until
we obtain a single Eulerian cycle.

0 1 2 3 4

Figure 7.1 Hierholzer’s algorithm running on an example. The first cycle detected is
0 → 1 → 2 → 0. Then along this cycle the vertices are explored to discover further attached
cycles. The vertices 0 and 1 have been processed and are pushed onto the stack P = [0,1].
It remains to process the remaining vertices of this cycle, namely Q = [0,2]. The algorithm
then explores a cycle starting from vertex 2 (start), which was popped from the stack Q, now
reduced to [0]. The exploration discovers the path 2 → 3 → 4 whose vertices are pushed onto
the stack R = [3,4]. The extreme point of the path is node = 4. The final path is
0 → 1 → 2 → 3 → 4 → 2 → 0.

For the algorithm to be in linear time, the search for the vertex v′ must be efficient.
For this, we decompose the cycle C into two portions P and Q. The vertices in P are
those that have no more allowable edges; they will be part of the final tour. As long as
Q is non-empty, we remove the vertex v from the head of Q and add it to the end of P ,
hence advancing the cycle. Next, we attempt to insert here a cycle passing through v.
For this, if there is an allowable edge incident to v, we find by simple exploration a
cycle R starting from v and returning to v. The cycle R is then added to the head of Q.
The algorithm is in linear time, as each vertex is considered only once.

Implementation Details
We first describe the implementation for directed graphs. To ease the manipulation of
the data, P,Q and R are represented by stacks, encoded by lists. The current cycle
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consists of the stack P , the vertex start, followed by the mirror list Q. The list R

describes a path, which once completed as a cycle will be attached to the current cycle
at the vertex start. To rapidly find an allowable outgoing arc of a vertex, we store
in next[node] the number of outgoing arcs of a vertex node that have already been
explored. It suffices to increment this counter when we traverse the arc towards the ith
neighbour of node, where i=next[node].

def eulerian_tour_directed(graph):
P = [] # resulting tour
Q = [0] # vertices to be explored, start at 0
R = [] # path from start node
next_ = [0] * len(graph) # initialize next_ to 0 for each node
while Q:

start = Q.pop() # explore a cycle from start node
node = start # current node on cycle
while next_[node] < len(graph[node]): # visit all allowable arcs

neighbor = graph[node][next_[node]] # traverse an arc
next_[node] += 1 # mark arc traversed
R.append(neighbor) # append to path from start
node = neighbor # move on

while R:
Q.append(R.pop()) # add to Q the discovered cycle R

P.append(start) # resulting path P is extended
return P

The variant of this algorithm for non-directed graphs is a bit more subtle. Once an
arc (u,v) is traversed, we must mark the arc (v,u) as forbidden. We have chosen to
store in seen[v] the set of neighbours u of v such that (v,u) is no longer allowed. For
more efficiency, v does not need to be added to seen[u] at the time of traversal of the
arc (u,v), since at this same moment the counter next[u] is incremented and this arc
will no longer be considered.

def eulerian_tour_undirected(graph):
P = [] # resulting tour
Q = [0] # vertices to be explored, start at 0
R = [] # path from start node
next_ = [0] * len(graph) # initialize next_ to 0 for each node
seen = [set() for _ in graph] # mark backward arcs
while Q:

start = Q.pop() # explore a cycle from start node
node = start # current node on cycle
while next_[node] < len(graph[node]): # visit all allowable arcs

neighbor = graph[node][next_[node]] # traverse an arc
next_[node] += 1 # mark arc traversed
if neighbor not in seen[node]: # not yet traversed

seen[neighbor].add(node) # mark backward arc
R.append(neighbor) # append to path from start
node = neighbor # move on

while R:
Q.append(R.pop()) # add to Q the discovered cycle R

P.append(start) # resulting path P is extended
return P
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Variant: Eulerian Path
If a graph is connected and all its vertices are of even degree, except for two vertices
u,v of odd degree, then a path exists that passes through each edge exactly once. This
path begins at u and ends on v. It can be found with the same algorithm described
above; it suffices to begin the path at u. To see why this works, just add a dummy edge
(u,v) and look for a Eulerian cycle.

Problem
Goldbach graphs [spoj:GOLDG]

7.2 The Chinese Postman Problem

Application
In 1962, the mathematician Meigu Guan (or Kwan Mei-Ko) worked as a postman
during the Chinese Cultural Revolution. He then posed the problem of finding the
shortest cycle in a graph that visits each edge at least once. This is exactly the problem
that a postman needs to solve to deliver the mail in each neighbourhood of a city.

Definition
Suppose we are given a connected undirected graph G(V,E). The goal is to find a
cycle in the graph that visits each edge at least once. When all the vertices are of even
degree, this boils down to determining an Eulerian cycle, the problem treated in the
preceding section. Note that in the original formulation of this problem, the graph was
weighted.

Complexity
The algorithm executes in time O(n3), where n is the number of nodes of the graph
(see Edmonds and Johnson, 1973).

Algorithm
The principle of the algorithm consists of working with a multigraph, i.e. a graph that
may have several edges between the same two vertices. The idea is to add edges in
order to render the graph Eulerian, and then to produce a Eulerian cycle.

The edges added must help link vertices of odd degree in order to make the graph
Eulerian. As we wish to add as few edges as possible, these extra edges will form a
collection of paths that will match edges of odd degree.

The central problem thus consists of computing a perfect matching in the complete
graph of vertices in V of odd degree, where the weight of an edge (u,v) is equal to the
distance between u and v in G.

The computation of all the distances costs O(n3) by the Floyd–Warshall algo-
rithm. Then a perfect minimum weight matching can be computed in time O(n3) with
Gabow’s algorithm (1976). However, this sophisticated algorithm is beyond the scope
of the present text.
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Problem
Free Tour [spoj:FTOUR]

7.3 Cycles with Minimal Ratio of Weight to Length—Karp

A classic problem consists of detecting negative cycles in a graph. One application,
known as arbitrage, is given as an exercise in Cormen et al. (2010, Ex. 24-3, p. 615):
given n currencies with their exchange rates, we would like to determine a cycle that
makes us rich by changing currencies along the cycle. However, in this section we will
consider a somewhat different problem that admits an elegant solution.

Definition
Given a weighted directed graph, the goal is to find a cycle C that minimises the mean
weight over the edges, i.e. that minimises the following∑

e∈C w(e)

|C| .

Application
Imagine a system modelled by a graph whose vertices represent states and whose arcs
are the possible transitions between states. Each transition is labelled with its resource
consumption. At each step in time, the system is in a particular state and must evolve
to another state by following an outgoing arc. The goal is to minimise the long-term
resource consumption, and an optimal solution is a minimal mean weight cycle.

Algorithm in O(|V | · |E|) by Karp (1978)
The algorithm supposes the existence of a source vertex s from which every vertex
can be reached. If this is not the case, such a vertex can always be added to the graph.

As we are interested in the mean weight of the arcs of a cycle, the length of the
cycles is also important. This is why, instead of simply computing the shortest paths,
we would like to determine for each vertex v and each length � = 0, . . . ,n a shortest
path from the source s to v made up of exactly � arcs. This part is implemented using
dynamic programming. Assign d[�][v] as the weight of the shortest path to v. Initially,
d[0][v] is 0 for v = s and +∞ for the other vertices. Then for each � = 1, . . . ,n,

d[�][v] = min
u

d[�− 1][u]+ wuv

where the minimum is taken over all incoming arcs (u,v) of weight wuv. Let d[v] =
mink∈N d[k][v] be the distance from the source s to v.

Key Observation
Let C be a cycle of minimal mean weight. Its weight λ satisfies the following

λ = min
v

max
k=0,...,n−1

d[n][v]− d[k][v]

n− k
. (7.1)
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To see this, it suffices to make a few observations, beginning with the case λ = 0.
We must show that the right-hand side of (7.1) is zero, or equivalently,

min
v

max
k=0,...,n−1

d[n][v]− d[k][v] = 0.

Since λ = 0, the graph does not have a negative weight cycle. For each vertex v, a
shortest path exists from the source s to v which is acyclic, and hence

d[v] = min
k=0,...,n−1

d[k][v].

Consequently,

max
k=0,...,n−1

d[n][v]− d[k][v] = d[n][v]− d[v].

For each vertex v, we have d[n][v] ≥ d[v] and hence

min
v

d[n][v]− d[v] ≥ 0.

It remains to exhibit a vertex v for which the equality d[n][v] = d[v] holds. Let u be
a vertex of C. As there is no negative weight cycle, a simple path P exists that is of
minimal weight from the source s to u. We complete P by as many copies of C as
required to obtain a path P ′ from s to u with length at least n. As C has weight zero,
P ′ is again a minimal weight path to u. Let P ′′ be a prefix of P ′ of length exactly n

and let v be the last vertex of P ′′. P ′′ is also a shortest path from the source to v, see
Figure 7.2. Hence d[n][v] = d[v] for this vertex, which proves the equality (7.1) for
the case λ = 0.

s u

v

P
C

Figure 7.2 Illustration of the proof for the case λ = 0. P is a minimal weight path from the
source to u, and adding copies of the cycle C with zero weight results in a minimal weight
path; hence every vertex encountered on the cycle is itself reached by a minimal weight path.

For the case λ �= 0, here is an interesting observation. If we subtract a value �

from the weight of each arc, the value λ is also reduced by �. If we assign d ′ as the
distances in the graph thus modified, the following equalities hold:

d ′[n][v]− d ′[k][v]

n− k
= d[n][v]− n�− (d ′[k][v]− k�)

n− k

= d[n][v]d[k][v]

n− k
− n�− k�

n− k

= d[n][v]d[k][v]

n− k
−�.

This shows that the right-hand side of (7.1) is also reduced by �. By selecting for �

the constant λ, we are reduced to the case λ = 0, which proves the equality (7.1).
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Implementation Details
The matrix dist contains the distances as described above. There is also a variable
prec which stores the predecessors on the shortest paths. Once these matrices are
populated, the second step consists of finding the pair v,k optimising the expression
(7.1), and a third step extracts a cycle. In the case where there are no cycles reachable
from the source, the function returns None.

def min_mean_cycle(graph, weight, start=0):
INF = float(’inf’)
n = len(graph) # compute distances
dist = [[INF] * n]
prec = [[None] * n]
dist[0][start] = 0
for ell in range(1, n + 1):

dist.append([INF] * n)
prec.append([None] * n)
for node in range(n):

for neighbor in graph[node]:
alt = dist[ell - 1][node] + weight[node][neighbor]
if alt < dist[ell][neighbor]:

dist[ell][neighbor] = alt
prec[ell][neighbor] = node

# -- find the optimal value
valmin = INF
argmin = None
for node in range(n):

valmax = -INF
argmax = None
for k in range(n):

alt = (dist[n][node] - dist[k][node]) / float(n - k)
# do not divide by float(n-k) => cycle of minimal total weight
if alt >= valmax: # with >= we get simple cycles

valmax = alt
argmax = k

if argmax is not None and valmax < valmin:
valmin = valmax
argmin = (node, argmax)

# -- extract cycle
if valmin == INF: # -- there is no cycle

return None
C = []
node, k = argmin
for l in range(n, k, -1):

C.append(node)
node = prec[l][node]

return C[::-1], valmin

Problem
Word Rings [spoj:WORDRING]
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7.4 Cycles with Minimal Cost-to-Time Ratio

Definition
Let G be a directed graph, with two weights on its arcs—costs c and times t . The times
are non-negative, while the costs are arbitrary. The goal is to find a cycle minimising
the ratio between the total cost and the total time. This is known as the tramp steamer
problem.

Application
The captain of a cargo vessel wants to determine a route that maximises his profit.
For this, he has available a complete graph covering different ports, where each (u,v)
is labelled by the travel time between u and v as well as the profit he can make by
purchasing merchandise at the port u and selling it at the port v. The goal is to find a
cycle that maximises the ratio of total profit to total time.

Algorithm Using Binary Search
See (Ahuja et al., 1993, sec. 5.7). Let C be a cycle. The objective value of C is at least
δ if and only if

∑
a∈C c(a)∑
a∈C t(a)

≤ δ,
∑
a∈C

c(a) ≤
∑
a∈C

δt(a),
∑
a∈C

c(a)− δt(a) ≤ 0.

To detect a cycle C with a ratio strictly better than δ, it suffices to detect a negative
cycle in the graph where the arcs a are weighted by c(a)− δt(a). Hence, this test can
be used in a binary search on δ to obtain a solution with the required precision. In the
case of integer costs and times, a precision of 1/

∑
a t(a) suffices to solve the problem

exactly. The complexity is then O(log(
∑

t(a))·|V |·|A|), where V is the set of vertices
and A the set of arcs.

As initially we do not have an a priori upper bound on the optimum δ∗, we begin
the test with δ = 1. As long as the test fails, we multiply δ by 2, to finally obtain a
δ′ where the test is positive, thus providing upper and lower bounds on the optimum.
In the case where the initial test is positive, we proceed in the same way, but instead
divide by 2 until the test fails.

7.5 Travelling Salesman

Definition
Given a graph with weights on its arcs, we would like to compute a shortest path
beginning at a given source and visiting each vertex exactly once: such a path is said
to be Hamiltonian.
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Complexity
The solution presented, using dynamic programming, executes in time O(|V |22|V |).

Algorithm
As the associated decision problem is NP-complete, we propose an acceptable solution
for when the number of vertices is small, on the order of twenty or so. Suppose that
the vertices are numbered from 0 to n − 1, where for ease of notation we take n − 1
as the source.

For each set S ⊆ {0,1, . . . ,n− 2}, assign O[S][v] as the minimal weight of a path
from the source to v passing exactly once by all the vertices of S and terminating on v,
with v �∈ S.

For the base case, O[∅][v] is simply the length of the arc from n−1 to v. Otherwise,
for non-empty S, O[S][v] is the minimum of

O[S\{u}][u]+ wuv

over all the vertices u ∈ S, where wuv is the weight of the arc (u,v).

Problems
Small TSP [spoj:STSP]
Collecting Beepers [kattis:beepers]

7.6 Full Example: Menu Tour

See [spoj:MENUTOUR].
Rachid is in Barcelona for the first time, and wants to enjoy a truly fine dinner. The

restaurant guides suggest that the ultimate dinner consists of C specialities, numbered
from 1 to C, tasted in the specified order.

The streets of Barcelona form a regular grid: east–west oriented streets cross-
ing north–south oriented streets. There are R restaurants in the city and they are
located at the crossings. Walking from crossing (i1,j1) to crossing (i2,j2) takes exactly
|i1 − i2| + |j1 − j2| minutes, where |x| denotes the absolute value of x. Here, (i,j )
means the ith street from west to east and the j th street from south to north.

Unfortunately, none of the restaurants offer all C dishes. If a restaurant k offers
dish c, then it costs P [k,c] euros. Otherwise, the value P [k,c] = 0 indicates that
the item is not offered. Rachid has B euros that he can spend on his dinner. He
would like to choose a sequence of restaurants so that he can have his ultimate dinner
without exceeding the available budget, while minimising the total travel time between
restaurants. The tour can start and end at an arbitrary crossing, and can visit the
same restaurant several times.
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Example

1 - -
1

- 9 7

2

- - 3

3

- 2 -

4

8 - 9

5

Figure 7.3 An instance of the Menu Tour problem.

In this example, there are three menu items, whose prices are displayed in order, for
every restaurant (a ‘-’ corresponds to a dish that is not offered, i.e. when P [k,c] = 0).
If Rachid has a budget of 9 euros, the optimal tour consists of the restaurants 1–4–3
for a cost of 6 euros and a total travel time of 12 minutes. There is a shorter tour of 2
minutes consisting of the restaurant sequence 1–2, but its cost is 17 euros, exceeding
the available budget of 9 euros.

Input

The input begins with a line consisting of the integers C,R,B, separated by a single
space. Then R lines follow. The kth line describes the kth restaurant and consists of
2 + C integers separated by a single space, namely i[k], j [k], P [k,1], . . . ,P [k,C],
where (i[k],j [k]) defines the location of the restaurant.

Limits

• 1 ≤ C ≤ 20;

• 1 ≤ R ≤ 100;

• 0 ≤ B ≤ 100;

• for every 1 ≤ k ≤ R:

– 1 ≤ i[k] ≤ 1 000;
– 1 ≤ j [k] ≤ 1 000;
– for every 1 ≤ c ≤ C, 0 ≤ P [k,c] ≤ 40.
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Output

The output should consist of a single integer y: the minimum total travel time of an
optimal restaurant tour for Rachid. If there is no feasible tour, the value −1 should be
returned.

Sample input Sample output

3 5 9 12
1 1 1 0 0
3 1 0 9 7
6 2 0 0 3
3 5 0 2 0
6 5 8 0 9

Solution

This problem sounds very much like a travelling salesman tour, but the order in which
the dishes need to be consumed simplifies it a lot. It can be computed by dynamic
programming. For any dish number c, restaurant r and budget b, let A[c,r,b] be the
minimum time for a tour that covers dishes from 0 to c, ends in restaurant r and costs
exactly b euros. By convention denote A[c,r,b] = +∞ if there is no such tour.

The base cases are for c = 0. For any restaurant r , if P [r,0] > 0 the tour could
start in r and spend P [r,0] on the first dish (numbered 0), without any travel time.
Hence, A[0,r,b] = 0 for b = P [r,0] in that case, and A[0,r,b] = +∞ otherwise.

The induction step for c > 0 and any r,b follows the following recursion

A[c,r,b] =
{
+∞ if b < P [r,c]

mini A[c − 1,i,b − P [r,c]]+ dist[i][r] otherwise,

where the dist[i][r] denotes the distance between the restaurants i and r . These
distances should be precomputed in order for the algorithm to be efficient. There are
O(NCB) variables, each is the minimisation over O(N ) alternatives, hence the total
complexity is O(N2CB), which is acceptable given the upper bounds.
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A classic problem on graphs consists of finding a shortest path between two vertices,
a source s and a destination v. For the same cost we can obtain the shortest paths
between the source s and all possible destinations v′; this is why the algorithms pre-
sented in this chapter solve this more general problem of the shortest paths from a
unique source in a directed graph.

The length of a path is defined as the sum of its arc weights, and the distance from
s to v is defined as the length of a shortest path between s and v. To simplify the
presentation, in general we show only how to compute the distances. To obtain a path
realising this distance, it suffices to maintain, in addition to the array of distances, an
array of predecessors. Hence, if dist[v] is the distance from s to v with dist[v] =
dist[u] + w[u][v] for a vertex u, we store prec[v] = u in the array of predecessors.
By following the predecessors back to the source s, we can determine a shortest path
in reverse order, leading from the source to a given destination.

8.1 Composition Property

The shortest paths exhibit a composition property, which is the key to the different
shortest path algorithms. Richard Bellman called this the Principal of Optimality,
which lies at the heart of problems of dynamic programming. Consider a path P from
s to v (also known as an s− v path), passing by a vertex u, see Figure 8.1. It is thus the
concatenation of a path P1 from s to u with a path P2 from u to v. The length of P is
the sum of the lengths of P1 and P2. Thus, if P is a shortest path from s to v, then P1

must be a shortest path from s to u and P2 a shortest path from u to v. This is obvious,
as the replacement of P1 by a shorter path would result in a shorter path from s to v.

s u v
P1 P2

Figure 8.1 A shortest path from s to v passing through u is the concatenation of a shortest path
from s to u with a shortest path from u to v.
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Black, Grey and White Vertices
This composition property is the basis of Dijkstra’s algorithm and its variants, includ-
ing on graphs with non-negative weights on its arcs. The algorithm maintains an array
dist containing the distances from the source to the vertices; it is set to +∞ for the
vertices v for which no s − v path has yet been found.

The vertices of the graph are thus divided into three groups, see Figure 8.2. The
black vertices are those with an already-identified shortest path from the source, the
grey vertices are the direct neighbours of the black vertices and the white vertices are
those currently without a known shortest path.

Initially, only the source s is black, with dist[s] = 0. All the direct neighbours
v of s are grey, and dist[v] is the weight of the arc (s,v). All the other vertices are
for the moment white. The algorithm then repeatedly colours the grey vertices black,
and their white neighbours grey, maintaining this invariant. Finally, all the vertices
reachable from s will be black, whereas the others will remain white.

0s

1 2

4

5

6

6

∞

∞

∞

∞

∞

1

4

1

3

3

2

2

8

1

2

7

3

2

3

2

1

Figure 8.2 Example of the colouring of vertices by Dijkstra’s algorithm. Each vertex v is
labelled with dist[v], its current distance from the source, and the arcs specified by prec are
highlighted in bold.

Key Observation
Which grey vertex should we select to colour black? The choice is made with a vertex
v with the smallest dist[v]. Why is this the correct choice? Consider an arbitrary s−v
path P . Since s is black and v is grey, a first grey vertex u exists on this path. Hence, P
can be decomposed into an s− u path P1 and a u− v path P2, where P1 contains only
intermediate black vertices, excluding u. By the choice of v, dist[u] ≥ dist[v],
and by the hypothesis that the weights of the arcs are non-negative, the length of P2

is also non-negative. Hence, the length of P is at least dist[v]. As the choice of P

was arbitrary, this shows that the shortest s − v path is of length dist[v]. Colouring
v black is thus valid, and to maintain the invariant, for each vertex v′ reachable from
v by an arc, we must colour v′ in grey if this is not already the case, and dist[v] +
w[v][v’] becomes a new candidate for the distance dist[v’].

Data Structure for the Grey Vertices
As for every iteration we seek a grey vertex v with minimal dist[v], a priority
queue holding the vertices v is well-suited, with the priority values being the values
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of dist. This is the implementation chosen for Dijkstra’s algorithm. The removal
of the vertex with the smallest distance can thus be done in time logarithmic in the
number of vertices.

If the graph has a special structure, then a simpler structure could possibly be used.
For example, in the case where the weights of the arcs are in {0,1}, there will only be
two types of grey vertices, those with a distance d and those with a distance d+1. This
priority queue can then be implemented in a simpler manner using a double-ended
queue, abbreviated deque. This queue contains the list of grey vertices in priority order,
and it suffices to remove from the left in constant time a vertex v to be coloured black.
The neighbours of v are added to the queue on the left or on the right, according
to whether the weight on the corresponding arc is 0 or 1, see 8.2. Finally, all the
operations of manipulation of the queue can be done in constant time, and we shave
off a logarithmic factor compared to Dijkstra’s algorithm.

If the graph is even simpler, with unit weights on all of its arcs—in a manner of
speaking a non-weighted graph—then this double-ended queue can be replaced by
a simple queue, and managed using the algorithm of breadth-first search described
previously in Section 6.4 on page 93.

Shortest Path Algorithms

Without weights O(|E|) breadth-first search (BFS)
Weights 0 or 1 O(|E|) Dijkstra adapted with a double-ended queue
Weights non-negative O(|E| log |V |) Dijkstra
Weights arbitrary O(|V | · |E|) Bellman-Ford
Paths from all sources O(|V |3) Floyd-Warshall

8.2 Graphs with Weights 0 or 1

Definition
Given a graph whose arcs are weighted by 0 or 1, and a source vertex s, we wish to
compute the distances from s towards the other vertices.

Application
You are provided with a map of an N×M rectangular labyrinth containing obstructing
walls and would like to exit while demolishing a minimum number of walls. The
labyrinth can be seen as a directed graph whose arcs (from one cell to an adjacent
cell) are weighted either by 0 (free access to the cell) or by 1 (access to a cell blocked
by a wall). We seek to demolish as few walls as possible, which comes down to finding
the shortest path in this graph from the entrance to the exit.

Algorithm
We return to the structure of a generic shortest path algorithm. At any moment, the
vertices of the graph are divided into three groups: black, grey and white.



8.3 Graphs with Non-negative Weights—Dijkstra 127

The algorithm maintains a double-ended queue containing all the grey vertices, as
well as eventually some vertices that were grey at the time of their insertion, but that
since have become black. The queue has the property that for a certain value x, all
the black vertices vb satisfy dist[vb] = x, and up to a certain position all the grey
vertices vg0 satisfy dist[vg0] = x, whereas those after satisfy dist[vg1] = x + 1.

As long as this queue is non-empty, the algorithm extracts a vertex v from the
head of the queue, which hence has a minimal value dist[v]. If this vertex is
already black, there is nothing to do. Otherwise, it is coloured black. In order to
maintain the invariant, we must then add certain neighbours v′ of v to the queue. Let
� = dist[v] + w[v][v′]. If v′ is already black, or if dist[v’] ≤ �, there is no reason
to add v′ to the queue. Otherwise, v′ can be coloured grey, dist[v’] is lowered to �

and v′ is added to the head or tail of the queue depending on whether w[v][v′] = 0 or
w[v][v′] = 1.

def dist01(graph, weight, source=0, target=None):
n = len(graph)
dist = [float(’inf’)] * n
prec = [None] * n
black = [False] * n
dist[source] = 0
gray = deque([source])
while gray:

node = gray.pop()
if black[node]:

continue
black[node] = True
if node == target:

break
for neighbor in graph[node]:

ell = dist[node] + weight[node][neighbor]
if black[neighbor] or dist[neighbor] <= ell:

continue
dist[neighbor] = ell
prec[neighbor] = node
if weight[node][neighbor] == 0:

gray.append(neighbor)
else:

gray.appendleft(neighbor)
return dist, prec

Problem
KATHTHI [spoj:KATHTHI]

8.3 Graphs with Non-negative Weights—Dijkstra

Definition
Given a directed graph with non-negative weights on its arcs, we seek the shortest path
between a source and a destination.
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Complexity
A brutal implementation is in O(|V |2), while the use of a priority queue lowers the
complexity to O(|E| log |V |). By using a Fibonacci priority queue, we can obtain a
complexity of O(|E| + |V | log |V |) (see Fredman and Tarjan, 1987); however, the
improvement is perhaps not worth the implementation effort.

Algorithm
We continue with the formalism introduced in Section 8.1 on page 125. Dijkstra’s
algorithm maintains a set of vertices S for which a shortest path from the source has
already been computed. Hence, S is precisely the set of black vertices. Initially, S

contains only the source itself. In addition, the algorithm maintains a tree of shortest
paths rooted at the source and covering S. We assign prec[v] as the predecessor of v
in this tree and dist[v] as the distance computed, see Figure 8.3.

2
4

1

Figure 8.3 Dijkstra’s algorithm captures the vertices via balls of increasing radius centred on
the departure vertex. There are no vertices at distance 1, thus the algorithm leaps directly to the
closest vertex, at distance 2, via the priority queue.

We then examine the edges at the boundary of S. More precisely, we consider the
arcs (u,v) with u in S and v not in S. These arcs define paths composed of a shortest
path from the source to u followed by the arc (u,v). This path has a weight that we
assign as priority to the arc (u,v).

As explained in Section 8.1 on page 125, the algorithm extracts from the priority
queue an arc (u,v) of minimal priority, thus defining a shortest s− v path. We can then
add the arc (u,v) to the tree of shortest paths, add v to S and iterate.

Priority Queues
The principal ingredient of this algorithm is a priority queue, which is a data structure
containing a set of elements, allowing the addition of elements and the extraction of
the one with the smallest priority.

Such a structure is, in general, implemented with a heap (here a min-heap, see
Section 1.5.4 on page 22), where these operations have logarithmic cost in the size
of the set.
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A Slight Improvement
For more efficiency, we can ignore arcs already known to not lead to a shortest path,
and not store them in the priority queue. For this, we update dist[v] whenever an arc
to v is added to the queue. Hence, at the moment of considering an arc, we can decide
if it improves the shortest path to v known up to this point.

Implementation Details
The code presented allows the computation of the shortest paths to each and every
destination, if a particular destination is not specified when the function is invoked.

For each outgoing arc (u,v), we store in the queue the pair (d,v), where d is the
length of the path associated with this arc.

It is possible for a vertex to be found several times in the queue with different
weights (priorities). However, once the first occurrence of this vertex is extracted, it
will be coloured black, and the further occurrences will be ignored at the time of their
extraction.

def dijkstra(graph, weight, source=0, target=None):
n = len(graph)
assert all(weight[u][v] >= 0 for u in range(n) for v in graph[u])
prec = [None] * n
black = [False] * n
dist = [float(’inf’)] * n
dist[source] = 0
heap = [(0, source)]
while heap:

dist_node, node = heappop(heap) # Closest node from source
if not black[node]:

black[node] = True
if node == target:

break
for neighbor in graph[node]:

dist_neighbor = dist_node + weight[node][neighbor]
if dist_neighbor < dist[neighbor]:

dist[neighbor] = dist_neighbor
prec[neighbor] = node
heappush(heap, (dist_neighbor, neighbor))

return dist, prec

Variant
The implementation of Dijkstra’s algorithm can be slightly simplified with the use of
a priority queue allowing the priority of an element to be changed, such as the queue
presented in Section 1.5.4 on page 22. Instead of storing the arcs in the queue, we store
the vertices, in fact all the vertices of the graph, and the priority of a vertex v is set
to dist[v]. In practice, the queue contains pairs of the form (dist[v], v), and we
compare them lexicographically. When a shorter path to v is discovered, we update the
pair corresponding to v with the new shorter distance. The advantage of this variant is
that we can skip marking the vertices black. For each vertex v, the queue contains only
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a single pair with v, and when (dist[v], v) is extracted from the priority queue, we
know that we have discovered a shortest path towards v.

def dijkstra_update_heap(graph, weight, source=0, target=None):
n = len(graph)
assert all(weight[u][v] >= 0 for u in range(n) for v in graph[u])
prec = [None] * n
dist = [float(’inf’)] * n
dist[source] = 0
heap = OurHeap([(dist[node], node) for node in range(n)])
while heap:

dist_node, node = heap.pop() # Closest node from source
if node == target:

break
for neighbor in graph[node]:

old = dist[neighbor]
new = dist_node + weight[node][neighbor]
if new < old:

dist[neighbor] = new
prec[neighbor] = node
heap.update((old, neighbor), (new, neighbor))

return dist, prec

Problems
Mice and Maze [spoj:MICEMAZE]
Almost Shortest Path [spoj:SAMER08A]
Dragon Maze [gcj:China2014roundB]
Potholers [spoj:POTHOLE]

8.4 Graphs with Arbitrary Weights—Bellman–Ford

Definition
For this problem, negative arc weights are allowed. If a cycle of negative total weight
is reachable from the source, the distance from the source to the vertices of the cycle
is−∞. Indeed, by traversing this cycle an arbitrary number of times, we obtain a path
from the source to a vertex in the cycle of negative weight with negative length and
arbitrarily large magnitude. This bothersome situation is detected by the algorithm
presented.

Complexity
Dynamic programming provides a solution in O(|V | · |E|); see Bellman (1958); Ford
(1956) as well as Moore (1959), who independently discovered the same algorithm.

Algorithm
The central operation is the relaxation of the distances (see Figure 8.4), consisting
for each arc (u,v) in testing if the use of this arc could diminish the distance from
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the source to v. The value du + wuv is thus a candidate for the distance dv. This is
performed with two nested loops; the inner loop relaxes the distances via each arc,
and the outer loop repeats this procedure a certain number of times. We show that
after k iterations of the outer loop, we have computed for each vertex v the length of a
shortest path from the source to v, using at most k arcs. This is true for k = 0, and if
we assign dk[v] as this length for every k = 1, . . . ,|V | − 1, then

dk+1[v] = min
u:(u,v)∈E

dk[u]+ wuv.

0

9

4

9

4
2

0

6

4

9

4
2

Figure 8.4 An example of relaxation via the greyed arc. Following this edge shortens the path to
the destination vertex of the arc. The vertices are labelled with the distance from the source
vertex, which has label 0. The shortest paths are shown in bold.

Detection of Negative Cycles
Consider the situation where the graph does not contain any negative cycles. In this
case, all the shortest paths are simple and |V | − 1 iterations of the outer loop are
sufficient to determine the distances towards each of the destinations. Hence, if we
observe a change during the |V |th iteration, this indicates that a negative cycle exists
that is reachable from the source. Our implementation returns a Boolean indicating
the presence of such a cycle.

def bellman_ford(graph, weight, source=0):
n = len(graph)
dist = [float(’inf’)] * n
prec = [None] * n
dist[source] = 0
for nb_iterations in range(n):

changed = False
for node in range(n):

for neighbor in graph[node]:
alt = dist[node] + weight[node][neighbor]
if alt < dist[neighbor]:

dist[neighbor] = alt
prec[neighbor] = node
changed = True

if not changed: # fixed point
return dist, prec, False

return dist, prec, True

Problem
Negative Cycles [spoj:NEGCYC]
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8.5 All Source–Destination paths—Floyd–Warshall

Definition
Given a graph with weights on its arcs, we want to compute the shortest path between
each pair of nodes. Once again, the problem is well-posed only in the absence of cycles
with negative weight, and the algorithm detects this exception.

Complexity
The Floyd–Warshall algorithm executes in O(n3), where n is the number of vertices;
see Floyd (1962); Warshall (1962) as well as Roy (1959), who independently discov-
ered the same algorithm.

Algorithm
The distances between the vertices are computed by dynamic programming, see
Figure 8.6. For each k = 0,1, . . . ,n a square matrix Wk is computed, containing
in Wk[u][v] the length of the shortest path from u to v using only the intermediate
vertices of index strictly inferior to k, where the vertices are numbered from 0 to n−1.
Hence, for k = 0, the matrix W0 contains only the weights of the arcs, and+∞ for the
elements (u,v) not having an arc (u,v). The updating is simple using the composition
principle: a shortest path from u to v passing through a vertex k is composed of
a shortest path from u to k and a shortest path from k to v. We thus compute, for
k,u,v ∈ {0, . . . ,n− 1}:

Wk+1[u][v] = min{Wk[u][v],Wk[u][k]+Wk[k][v]}.
It is indeed the same k as index of the vertices and as position in the array: for the
computation of Wk+1[u][v], we are allowed to consider the paths passing through the
vertex k.

auv =
n−1∑
k=0

buk × ckv

A = BC

W
(�+1)
uv =

n−1
min
k=0

W
(�)
uk
+W

(�)
kv

W (�+1) = W (�)W (�)

Figure 8.5 The Floyd–Warshall algorithm can be seen as a multiplication of matrices on the
tropical algebra (R, min ,+). However, we cannot employ the usual algorithms of rapid
multiplication since we are only operating in a semiring.

u

k
v

4
2

9
u

k
v

4
2

9

Figure 8.6 An example of relaxation via the vertex k. Passing through k shortens the path
from u to v.
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Implementation Details
The implementation maintains a unique matrix W , which plays the role of the succes-
sive Wk; it modifies the given weight matrix. It detects the presence of negative cycles
and returns False in this case.

def floyd_warshall(weight):
V = range(len(weight))
for k in V:

for u in V:
for v in V:

weight[u][v] = min(weight[u][v],
weight[u][k] + weight[k][v])

for v in V:
if weight[v][v] < 0: # negative cycle found

return True
return False

Detection of Negative Cycles
A negative cycle exists the passes through a vertex v if and only if Wn[v][v] < 0.
However, as shown by Hougardy (2010), it is strongly advised to detect the negative
cycles with the Bellman–Ford algorithm. In fact, in the presence of negative cycles,
the values computed by the Floyd–Warshall algorithm can have an absolute value
exponentially large in the number of vertices of the graph, causing an overflow in the
capacity of the variables.

Example: Roads in Berland [spoj:CT25C]
Suppose we are given a strongly connected directed graph with non-negative weights
on the arcs. These define a shortest distance D[u,v] for every pair of vertices (u,v),
which can be computed by the Floyd–Warshall algorithm. The score of the graph is
defined as the sum of the shortest distances over all pairs of vertices. Now, suppose
that an additional arc (u′,v′) with weight w[u′,v′] is added to the graph. For example,
a tunnel is constructed through a mountain from u′ to v′, much shorter than the old
road going around the mountain between u′ to v′. By how much will the total score
be diminished in the presence of this new arc? For this, it suffices to compute the sum∑

u,v max{0,D[u,v]− (D[u,u′]+ w[u′,v′]+D[v′,v])}. If n is the number of vertices
of the graph and k the number of additional arcs, then the complexity is O(n3 + kn2),
quite acceptable for the limits n,k ≤ 300.

8.6 Grid

Problem
Given a rectangular grid, where certain cells are inaccessible, find a shortest path
between the entrance and the exit.
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The Algorithm
This problem is easily solved with a breadth-first search on the graph determined by
the grid. However, rather than explicitly constructing the graph, it is simpler to perform
the search directly on the grid. The grid is given in the form of a 2-dimensional array
containing the character # for the inaccessible cells and a space for the accessible cells.
Our implementation uses this same array to mark the vertices already visited, and
hence avoids an additional data structure. The cells visited will then contain symbols
‘→’, ‘←’, ‘↓’, ‘↑’, indicating the predecessor on the shortest path from the source.

def dist_grid(grid, source, target=None):
rows = len(grid)
cols = len(grid[0])
i, j = source
grid[i][j] = ’s’
Q = deque()
Q.append(source)
while Q:

i1, j1 = Q.popleft()
for di, dj, symbol in [(0, +1, ’>’),

(0, -1, ’<’),
(+1, 0, ’v’),
(-1, 0, ’^’)]: # explore all directions

i2 = i1 + di
j2 = j1 + dj
if not (0 <= i2 < rows and 0 <= j2 < cols):

continue # reached the bounds of the grid
if grid[i2][j2] != ’ ’: # inaccessible or already visited

continue
grid[i2][j2] = symbol # mark visit
if (i2, j2) == target:

grid[i2][j2] = ’t’ # goal is reached
return

Q.append((i2, j2))

Variants
The proposed implementation is easy to modify to permit diagonal steps on the grid,
between cells sharing only a corner. A hexagonal grid can be treated in a similar
manner by transforming it into a grid with square cells, but with a particular neigh-
bourhood. Figure 8.7 illustrates this transformation.

−→ −→

Figure 8.7 Representation of a hexagonal grid by a square grid.
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Problem
A Famous Grid [spoj:SPIRALGR]

8.7 Variants

Given the importance of the shortest path problem, we present a number of classic
variants.

8.7.1 Non-Weighted Graphs

In a non-weighted graph, a breadth-first search is sufficient to determine the shortest
paths.

8.7.2 Directed Acyclic Graphs

A topological sort, see Section 6.7 on page 102, allows the vertices to be processed
in an appropriate order: to compute the distance from the source to a vertex v, we can
benefit from the distances to all the predecessors of v computed beforehand and apply
a simple dynamic programming recursion.

Application
This problem is given as an exercise in Cormen et al. (2010, Ex. 24-6, p. 618). We
wish to determine a route from home to work that starts by ascending and finishes by
descending, in order to first get some exercise and then cool down. For this, we model
the city as a graph, where the vertices represent the intersections with their elevation,
and the edges represent the roads with their lengths. Using the previous algorithm, we
can compute for each vertex v the distance from the source using only ascending arcs,
and at the same time compute the distance from v to the target using only descending
arcs. The answer is the sum of these distances minimised over all vertices v.

8.7.3 Longest Path

The dynamic programming mentioned above can be adapted to compute efficiently
the longest paths in a directed acyclic graph (DAG for short). For a general graph, the
problem consists in finding the longest path from the source to the destination which
passes through each vertex at most once. This problem is NP-hard—we do not know
of an algorithm to solve it in polynomial time. If the number of vertices is small, on
the order of twenty or so, then we can use the method of dynamic programming on
the subsets S of vertices and compute D[S][v], the length of the longest path from the
source to v using only the intermediate vertices from S. Then, for every non-empty S,
we have the relation
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D[S][v] = max
u∈S

D[S \ u][u]+ w[u][v],

where S \u is the set S with the vertex u removed, and w[u][v] is the weight of the arc
(u,v). The base case is then

D[∅][v] =
{

w[u][v] if the arc (u,v) exists
−∞ otherwise.

8.7.4 Longest Path in a Tree

Often, the problems that are difficult in general become easy on trees, as the notion
of subtree may allow a solution by dynamic programming. This is indeed the case
for the problem of the longest path in a tree, whose linear algorithm is presented in
Section 10.3 on page 178.

8.7.5 Path Minimising the Maximal Weight Over the Arcs

In the case where the goal is not to minimise the sum of the edge weights of a path,
but rather the maximum, a simple solution is to build on Kruskal’s algorithm, which
uses a union-find structure. We begin with an empty graph, and add the edges in order
of increasing weight, up until the source and the destination are joined in the same
connected component. For directed graph, a similar approach can be made to work,
but the simplest solution might be to adapt Dijkstra’s algorithm, replacing additions
of distances with the maximum of arc weights over a path.

8.7.6 Graph Weighted on the Vertices

Consider a graph whose vertices carry weights, rather than the arcs. The goal is to find
a path from the source to the destination minimising the sum of the weights of the
vertices traversed. This situation can be reduced to the case described previously. We
replace each vertex v by two vertices v− and v+ linked by an arc with the weight of v,
and replace each arc (u,v) by an arc (u+,v−) of weight zero.

8.7.7 Path Minimising the Maximal Weight on the Vertices

In the case where the weight of a path is defined as the maximum of the weights of the
intermediate vertices of the path, we can use the Floyd–Warshall algorithm. It suffices
to order the vertices by increasing weight and terminate the iteration as soon as a path
from the source to the destination is found.

It suffices to maintain a Boolean array of connectivity Ck[u][v] indicating if a path
from u to v exists that uses only the intermediate vertices with indices strictly inferior
to k. The update thus becomes

Ck[u][v] = Ck−1[u][v] ∨ (Ck−1[u][k] ∧ Ck−1[k][v]).
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8.7.8 All Edges Belonging to a Shortest Path

Given a weighted graph G, a source s and a destination t , several shortest paths
between s and t can exist. The goal is to determine all the edges belonging to these
shortest paths. To accomplish this, we make two invocations of Dijkstra’s algorithm,
one with s and the other with t as source, to compute for each vertex v the distance
d[s,v] from the source and the distance d[v,t] towards the destination. An edge (u,v)
of weight w[u,v] will belong to a shortest path if and only if

d[s,u]+ w[u,v]+ d[v,t] = d[s,t].

Variant for a Directed Graph
Dijkstra’s algorithm admits only a given source, and not a specific destination. Thus,
for the computation of all the distances d[v,t] towards t , it is necessary to temporarily
reverse the arcs.

Problems
Almost Shortest Path [spoj:SAMER08A]
Flowery Trails [kattis:flowerytrails]





9 Matchings and Flows

Traditionally, the heart of combinatorial optimisation lies in the matching and flow
problems. These problems are related and exist with several variants. The principle
underlying most of these algorithms is the repeated improvement of a solution, ini-
tially empty, leading to an optimal solution.

Suppose that in the bipartite graph of Figure 9.1 we wish to determine a perfect
matching, i.e. a pairing of each vertex on the left with a distinct vertex on the right.
The edges of the graph indicate the authorised pairings. If we begin by matching u0 to
v0, then we immediately find ourselves blocked. To obtain a perfect matching, we are
forced to backtrack and undo this pairing. This principle is illustrated in the following
sections.

u0

u1

v0

v1

u0

u1

v0

v1

u0

u1

v0

v1

Figure 9.1 Progressive construction of a perfect matching.

The flow algorithms presented here require that for every arc (u,v), the reverse arc
(v,u) also exists. Thus, beforehand they invoke the following function, which as nec-
essary completes the graph with reverse arcs of capacity 0. For every arc (u,v), it tests
if u is present in the adjacency list of v. This executes with complexity O(|E| · |V |),
negligible in our cases.

def add_reverse_arcs(graph, capac=None):
for u, _ in enumerate(graph):

for v in graph[u]:
if u not in graph[v]:

if type(graph[v]) is list:
graph[v].append(u)
if capac:

capac[v][u] = 0
else:

assert type(graph[v]) is dict
graph[v][u] = 0
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Complexity of the Algorithms Presented
In the following table, for bipartite graphs G(U,V,E) we assume |U | ≤ |V |. C

denotes the maximal capacity of the arcs.

Matchings

bipartite without weights O(|V | · |E|) augmenting paths
bipartite with weights O(|V |3) Kuhn-Munkres
bipartite with preferences O(|V |2) Gale-Shapley

Flows

bounded capacities O(|V | · |E| · C) Ford-Fulkerson
bounded capacities O(|V | · |E| · log C) binary blocking flows
arbitrary capacities O(|V | · |E|2) Edmonds-Karp
arbitrary capacities O(|V |2 · |E|) Dinic

Cuts

arbitrary graph O(|V |2 · |E|) Dinic
planar graph O(|E| log |V |) Dijkstra

9.1 Maximum Bipartite Matching
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Application
Assigning n courses to n classrooms, assigning n tasks to n workers—the applications
of the problem of maximum bipartite matching are widespread. A weighted version
of this problem exists that is described in Section 9.2 on page 145. As the applications
are most of the time modelled with bipartite graphs, we limit ourselves here to this
case, but the problem can also be solved for general graphs.

Definition
Let G(U,V,E) be a bipartite graph with E ⊆ U×V . A matching is a set M ⊆ E such
that no two edges in M have the same endpoint. Clearly, any subset of a matching is
also a matching. A matching M is said to be maximal if there is no matching M ′ that
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is a superset of M . In other words, M is maximal if it is not possible to add an edge to
M and still obtain a matching. Clearly, a maximal matching can be found by a greedy
algorithm. In contrast, a matching M is said to be maximum if there is no matching
M ′ with strictly larger cardinality than M . In this section, we consider the problem of
finding a maximum matching, also called the maximal cardinality matching problem,
or simply matching problem. For simplicity, we restrict ourselves to bipartite graphs.

Our goal is to find a maximal cardinality matching. For fixed M , a vertex is said to
be matched if it is the endpoint of an edge in M , otherwise the vertex is free.

Key Observation
A natural approach to tackle an optimisation problem is to begin with a naive solu-
tion and attempt to improve it iteratively until eventually it becomes optimal. To
understand how we might improve a matching, take a look at the symmetric differ-
ence between matchings. Given a blue matching M (shown as solid lines) and a red
matching M ′ (shown as dashed lines), the symmetric difference M ⊕ M ′ is defined
as M\M ′ ∪M ′\M . It is composed of cycles and paths of alternating colours, red and
blue, along the edges. By a counting argument, we see that if |M ′| > |M|, then an
alternating path P always exists that begins and ends with a red edge, see Figure 9.2.

M

M M¢

M¢

P

Figure 9.2 The symmetric difference M ⊕M ′ is made up of an alternating cycle, and a path P

augmenting for M ′ and two paths augmenting for M .

With respect to M , this path P starts and ends on a free vertex and alternates
between edges that are not in M and edges in M . Such a path is said to be augmenting,
as the difference M ⊕ P is a matching with one edge more than M .
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Hence, if M is not yet a matching of maximal cardinality, then an augmenting path
for M exists. More precisely, if there is a matching M ′ with |M ′| > |M| and a vertex
u ∈ U matched in M ′ but free in M , then there is an augmenting path P for M starting
at u.

Algorithm in O(|U | · |E|)
This observation leads to our first algorithm. Starting with the empty matching M ,
while still possible, we look for a path P augmenting for M , and replace M with
M ⊕ P . Such an augmenting path can easily be found with a depth-first search. It
suffices to start from a free vertex of U , and consider all its neighbours v not already
visited. If v is not yet matched, the path from the root to v is an augmenting path. If v
is matched with a vertex u′, then we continue the exploration from u′.

Finding and then applying an augmenting path thus costs O(|E|), and this step must
be taken for at most |U | vertices, hence the complexity of this algorithm is O(|U |·|E|).

Technical Details
In the following implementation,1 the matching is encoded by an array match associ-
ating with each vertex v ∈ V the matching vertex in U , where match[v] = None if v
is free.

The graph is represented by an array E such that E[u] is the list of neighbours
of u. The sets of vertices U,V must be given in the form [0,1,...,|U|-1] and
[0,1,...,|V|-1].

Note that this implementation uses Python’s lazy evaluation of boolean expressions,
a technique common to almost all programming languages. This means that in the OR
expression, the function augment is called if and only if the first term is false.

def augment(u, bigraph, visit, match):
for v in bigraph[u]:

if not visit[v]:
visit[v] = True
if match[v] is None or augment(match[v], bigraph,

visit, match):
match[v] = u # found an augmenting path
return True

return False

def max_bipartite_matching(bigraph):
n = len(bigraph) # same domain for U and V
match = [None] * n
for u in range(n):

augment(u, bigraph, [False] * n, match)
return match

1 Do you understand why only the vertices of V are marked when visited?
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Other Algorithms
An algorithm from Hopcroft and Karp (1972) allows the resolution of the maximum
matching problem in a bipartite graph in time O(

√|V | · |E|). Its principle is to dis-
cover several augmenting paths with the same traversal, and to privilege the short
augmenting paths. Alt et al. (1991) found an algorithm in O(|V |1.5√|E|/ log |V |)
which is interesting for dense graphs (with many edges). However, these algorithms
are complicated to implement and not that much faster in practice than the algorithm
presented in this section.

Problem of Minimal Covering by Vertices in a Bipartite Graph
Given a bipartite graph G(U,V,E), we want to find a set S ⊆ U ∪ V of minimal
cardinality such that every edge (u,v) ∈ E is covered by S, in the sense that at least
one of the vertices u,v is in S. Such a set is called a vertex cover; however, at times,
the terms traversal or nodal cover are used.

Application
Consider a city the map of which consists of n north–south streets and n east–west
streets, crossing in n2 intersections. We would like to monitor a number of the most
important intersections. A camera can monitor all of the intersections of any given
street. What is the minimum number of cameras that need to be installed in order to
monitor the given set of critical intersections?

Kőnig’s Theorem
Since each edge in a matching must have at least one endpoint in S, the size of the
maximal matching is a lower bound on the minimal size of the smallest covering.
Kőnig’s theorem states that there is, in fact, equality between these optimal values.

The proof is constructive and provides an algorithm for finding a minimal covering
from a maximal matching M of the graph G(U,V,E). Let Z be the set of vertices
unmatched by M , and that are in U . We add to Z all the vertices reachable from Z by
alternating paths, see Figure 9.3. We define the set

S = (U\Z) ∪ (V ∩ Z).

The construction of Z implies that for each edge (u,v) ∈ M , if v ∈ Z, then u ∈ Z

also. Conversely, since u was not initially in Z with the free vertices of U , u was added
to Z thanks to a matching edge; hence v ∈ Z.

This implies that for each matching edge (u,v) ∈ M , either both its endpoints are
in Z or neither of them are. Hence, every matching edge has exactly one endpoint in
S, and |S| ≥ |M|.

We now show that S covers all of the edges of the graph. Let (u,v) be an edge of
the graph. If u �∈ Z, then the edge is covered, so suppose that u ∈ Z. If (u,v) is not
a matching edge, then the maximal character of Z means that v must also be in Z,
and hence in S. If (u,v) is in M , then by the preceding observation v ∈ Z, and hence
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u1 u2 u3 u4 u5 u6 u7 u8

v1 v2 v3 v4 v5 v6 v7 v8

Figure 9.3 Computation of a minimal covering by vertices. First, a maximum matching is
computed, the edges of which are shown with thick lines. The set Z is composed of unmatched
vertices in U (in dark grey), completed by vertices reachable from Z by alternating paths (in
light grey). Finally, the solution produced is the set S = (U\Z) ∪ (V ∩ Z), the vertices of
which are shown with a shadow.

v ∈ S. This shows that S is a covering of the vertices, implying |S| ≤ |M|, hence we
can conclude that |S| = |M|.

Problems
Crime Wave [icpcarchive:5584]
Dungeon of Death [spoj:QUEST4]
Muddy Fields [spoj:MUDDY]

Problem of Minimal Covering by Edges in a Bipartite Graph
This time, the goal is to find the smallest set of edges S ⊆ E covering all of the vertices
of a given bipartite graph G(U,V,E), such that each vertex of U ∪ V is incident to
at least one edge of S. This problem is a bit simpler than the preceding one. In fact,
it suffices to start with a maximum matching in G, and for each unmatched vertex we
add an arbitrary incident edge, see Figure 9.4. Indeed, for a given covering by edges
S ⊆ E we can arbitrarily associate each vertex v to an incident edge e ∈ S, and say
that e is responsible for the covering of v. Then, every edge of S is responsible for one
or two vertices. The edges responsible for two vertices form a matching M . Then, M

is optimal if and only if S is optimal.

Example: Mission Improbable [kattis:improbable]
Your mission is to rob a warehouse containing large cubical crates, all of the same
size. These crates are stacked in piles, forming a square grid. The grid is monitored
by three cameras. The first camera, in front, determines for each row the height of the
tallest pile, while the second camera, on the side, does the same for each column. The
third camera, overhead, shows whether or not each pile is empty.

The input to the problem is a square matrix M of integers indicating the height of
each pile in the grid. Your goal is to steal away with the maximum number of crates
without the surveillance cameras detecting a change.
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u1 u2 u3 u4 u5 u6 u7 u8

v1 v2 v3 v4 v5 v6 v7 v8

Figure 9.4 Computation of a minimal covering by edges. First, a maximum matching is
computed, whose edges are shown with thick lines. For each unmatched vertex, shown in
white, an arbitrary incident edge is added, shown with dashed lines.

A Solution
First, observe that if we can diminish the height of a pile without getting caught, then
we can shrink it down to a single crate. So—which piles are ripe for the taking? To
fix the notation, the height of a row or column is defined as the maximal height of
its piles.

Consider a stack of height h > 1 at the intersection of a row and column the heights
of which are strictly greater than h. Then, we can safely make off with all but one of
the crates in this stack, as there are other piles in the same row and same column that
will be higher.

Now, fix a height h > 1 and consider the bipartite graph the vertices of which
are the rows on one hand, and the columns on the other, and for which there is an
edge for each stack of height exactly h. We ignore the isolated vertices in this graph
and mark the vertices corresponding to the rows and columns with maximal height
exactly h. The non-isolated unmarked vertices have a value strictly greater than h. We
must find a minimal set S of edges in this graph covering all the marked vertices.
These edges correspond to piles that we must preserve in order to go undetected
by the cameras.

If an edge is between two unmarked vertices, it will not be part of an optimal
solution S, since it cannot be used to cover a marked vertex. Now consider two
edges (u,v) and (u,v′) with u,v marked and v′ unmarked. Then, an optimal solution
exists without the edge (u,v′), as we can always exchange it with the edge (u,v).
Hence, for each marked vertex u in this graph, if it has at least one marked
neighbour, then we can suppress all the edges incident to u leading to unmarked
neighbours.

Similarly, if a marked vertex exists without unmarked neighbours, we can choose
an arbitrary incident edge for the optimal solution S. The result of these rules is the
classic problem of the covering by edges in a bipartite graph, since all the remaining
edges are between marked vertices. Note that from a practical point of view, it is
not necessary to construct such a graph for each height h; instead, we can construct
the union of these graphs and invoke one single time an algorithm to find a minimal
covering by edges.
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Application
In a teaching department there are n courses to distribute amongst n teachers. Each
teacher has provided preferences in the form of weights for each course. The problem
does not need normalisation, as some teachers might have more influence than others.
No one ever said that life had to be fair! The goal is to find a bijection between
courses and teachers maximising the total weights of the preferences over all of the
assignments. This is the problem of perfect maximum-weighted matching in a bipar-
tite graph.

Definition
Let G(U,V,E) be a bipartite graph with weights w : E → R on the edges. Without
loss of generality, we can suppose |U | = |V | and that the graph is complete, i.e. E =
U × V . The goal is to find a perfect matching M ⊆ E maximising the weight∑

e∈M w(e) (also called profit).

Variants
A variant of this problem is to compute a perfect matching of minimal cost. In this
case, it suffices to change the signs of the weights and then solve the problem of
maximal profit. If |U | > |V |, it suffices to add new vertices to V , linked to all the
vertices of U with weight 0. There is then a correspondence between the perfect
matchings of this new graph with the maximum matchings of the original graph. If
the graph is not complete, it suffices to complete it with edges of weight −∞; these
will never be selected for an optimal solution.

Complexity
The Kuhn–Munkres algorithm, also known as the Hungarian method, has complexity
in time of O(|V |3). This name is a reference to the Hungarian mathematicians Denes
Kőnig and Jenő Egerváry, who inspired the American Harold Kuhn to discover this
method in 1955. James Munkres then proved, in 1957, its polynomial complexity (see
Kuhn, 1955; Munkres, 1957). In 2006, it was found that the German mathematician
Carl Gustav Jacob Jacobi had, in fact, discovered this algorithm in 1840, published
posthumously only in 1890, see Ollivier (2009a,b)!
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Algorithm
This is an algorithm belonging to the class of what is known as primal-dual algo-
rithms, so named because they are modelled using linear programming. The descrip-
tion given here is quite simple, and will not use the vocabulary of linear programming.

The principal idea consists of considering a related problem, that of minimal valid
labels. The labels are weights � on the vertices, and they are valid if for every edge
(u,v)

�(u)+ �(v) ≥ w(u,v). (9.1)

The dual problem consists of finding valid labels with minimal total weight. By sum-
ming the inequality over all of the edges (u,v) of a matching we easily see that the
total weight of any valid labelling is equal to or greater than the weight of any perfect
matching.

The labels � define a set E� made up of all the edges (u,v) such that

�(u)+ �(v) = w(u,v).

The graph restricted to these edges is called the equality subgraph.
If ever we could find valid labels � and a perfect matching M ⊆ E� then the value

of
∑

E�
� is equal to the value of |M|. Since the value of

∑
E�

� bounds above that of
any perfect matching, this shows that M is of maximal weight.

The goal is thus to produce such a couple �,M . At any moment, the algorithm has
valid labels � as well as a matching M ⊆ E�. Then repeatedly, the algorithm will
attempt to augment the matching M , or if this is not possible, to improve the labels
(diminish their total value).

Extend the Matching
To extend the matching, we must look for an augmenting path in the equality subgraph.
For this, we construct an alternating tree. We begin by choosing a free vertex in ui ∈
U , i.e. not yet coupled by M . This vertex will be the root of the tree. The tree alternates
between vertices of U and of V . It also alternates from one level to another between
the edges of E�\M and the edges of M . Such a tree can be constructed with, for
example, a depth-first search. If ever one of the leaves of v is itself free, then the path
from ui to v is an augmenting path, and it is possible to augment M along this path
and increment |M| by 1. In this case, the construction of the alternating tree can be
interrupted.

Properties of the Alternating Tree
Consider the situation where the matching could not be extended. We have thus
constructed an alternating tree A rooted at a free vertex ui , with the property that
none of the vertices of V ∩ A are free. Denote AU the vertices of U covered by A

and AV the vertices of V covered by A. We then have |AU | = 1 + |AV |. In other
words, AU is composed of the root of A plus the vertices matched with each vertex
of AV .
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Figure 9.5 The steps of the Kuhn–Munkres algorithm. (1) The bipartite graph described by the
weight matrix given at the start of the section, with the labels of the vertices, the edges of the
equality subgraph and in thick lines the edges of a matching. The edges of a maximal
alternating tree rooted at u3 are shown in dotted lines. This tree covers the sets of vertices
AU,AV and can no longer be extended. (2) The improvement of the labels reveals a new
(u1,v3). (3) The alternating tree includes the free vertex v3. (4) The matching can be extended
along the path from u3 to v3.

Improving the Labelling
We must be cautious when improving the labelling. On one hand, the labels must
remain valid, and on the other hand, the tree A must remain an equality subgraph.
Hence, if ever we diminish the label of the root ui by a value � > 0, then we must
increase by the same value its descendants in the tree, which allows us to in turn
diminish by � all their descendants. Finally, the improvement consists of diminishing
by � the labels of all the vertices of AU and increasing by � the labels of the vertices
in AV . The total value of the labelling will thus diminish strictly, since |AU | > |AV |.
Observe that the difference between the left and right sides of the expression (9.1)—
known as the slack—is preserved when u,v ∈ A or u,v �∈ A, hence the tree A remains
in the equality subgraph. For the validity of the labels, it suffices to consider the edges
(u,v) with u ∈ AU and v �∈ AV . Hence, we can choose � as the minimal slack over
these edges, see Figure 9.5.

Progress
This procedure has the advantage that an additional edge between AU and V \AV will
be introduced into the equality graph. This is notably the case of the edge determining
the minimal slack �, since its slack then becomes 0. Note that other edges of this
graph might disappear, but this is of no importance for this algorithm.

Initialisation
To initiate the algorithm, we begin with a valid labelling � and an empty match-
ing M . To keep things simple, we choose �(v) = 0 for every v ∈ V , and �(u) =
maxv∈V w(u,v) for every u ∈ U .
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An Implementation in Time O(|V |4)
Our implementation features an outer loop over the vertices ui ∈ U , the invariant of
which claims that the vertices already seen are all matched by M . This loop has for
complexity a factor of O(|V |). Then, for each free vertex ui , we attempt to extend the
matching by constructing an alternating tree, or improving the labels if necessary. The
construction of the alternating tree costs O(|V |2).

After each improvement of the labels, the alternating tree expands, and in particular
|AV | increases strictly. However, |AV | is bounded by |U |, hence the expansion of the
matching costs O(|V |3), and the total complexity is O(|V |4).

def improve_matching(G, u, mu, mv, au, av, lu, lv):
assert not au[u]
au[u] = True
for v in range(len(G)):

if not av[v] and G[u][v] == lu[u] + lv[v]:
av[v] = True
if mv[v] is None or \

improve_matching(G, mv[v], mu, mv, au, av, lu, lv):
mv[v] = u
mu[u] = v
return True

return False

def improve_labels(G, au, av, lu, lv):
U = V = range(len(G))
delta = min(min(lu[u] + lv[v] - G[u][v]

for v in V if not av[v]) for u in U if au[u])
for u in U:

if (au[u]):
lu[u] -= delta

for v in V:
if (av[v]):

lv[v] += delta

def kuhn_munkres(G): # maximum profit bipartite matching in O(n^4)
assert len(G) == len(G[0])
n = len(G)
mu = [None] * n # Empty matching
mv = [None] * n
lu = [max(row) for row in G] # Trivial labels
lv = [0] * n
for u0 in range(n):

if mu[u0] is None: # Free node
while True:

au = [False] * n # Empty alternating tree
av = [False] * n
if improve_matching(G, u0, mu, mv, au, av, lu, lv):

break
improve_labels(G, au, av, lu, lv)

return (mu, sum(lu) + sum(lv))
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Implementation Details
The vertices of U are encoded by the integers 0 to n − 1, as are those of V . This
leads us to encode � in two arrays lu and lv, one for each set U,V . Similarly, mu
and mv hold the matching, where mu[u] = v, mv[u] = v if u ∈ U is matched with
v ∈ V .

The free vertices are indicated by mu[u] = None or mv[v] = None. Finally, the
Boolean arrays au and av indicate whether a vertex is covered by an alternating tree.

An Implementation in Time O(|V |3)
To obtain a cubic execution time, we must maintain an array slackVal to ease the
computation of � in the improvement of the labelling. For each vertex v ∈ V \AV we
will thus have

slackValv = min
u∈AU

�(u)+ �(v)− w(u,v).

Another array slackArg holds the vertex u minimising the expression.
With these arrays, it is easier to augment the tree, as it is no longer necessary

to reconstruct it from the root at each change of labels. The tree is thus no longer
constructed with a depth-first search, but by selecting new edges in the following
manner.

We select an edge (u,v) minimising the slack with u ∈ A and v �∈ A. If the slack is
not zero, then the labels can be updated as explained above, resulting in the reduction
of the slack of (u,v) to zero. In every case, (u,v) is an edge that can be attached to
the tree. Two cases must be considered. Either v is not matched, and we have detected
an augmenting path. Or v is already matched to some vertex u′: in this case, we can
also add (u′,v) to the tree A, and hence u′ to AU , then update the slacks in linear time,
and iterate. Thus, an augmenting path is found in quadratic time. Once a vertex of U

becomes matched, it stays so forever; thus there are only |V | augmenting paths to be
found. The final complexity is indeed O(|V |3).

Implementation Details
This time, we would like to know for each vertex in V if it belongs to the tree, and
if so, what is its predecessor. As the tree is not constructed by a depth-first search,
this information must be stored in an array. It will allow us to climb back to the
root when we need to update the matching. We assign Av[v] as the predecessor of
v ∈ AV , and set Av[v] = None for every vertex v ∈ V \AV outside of the tree. The
name of the array begins with a capital letter to distinguish it from the Boolean array
encoding AU .

The arrays slackVal and slackArg will be represented by a single array slack,
containing the pairs (val, arg). This implementation accepts graphs G(U,V,E)
with |U | �= |V |.
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def kuhn_munkres(G, TOLERANCE=1e-6):
nU = len(G)
U = range(nU)
nV = len(G[0])
V = range(nV)
assert nU <= nV
mu = [None] * nU # empty matching
mv = [None] * nV
lu = [max(row) for row in G] # trivial labels
lv = [0] * nV
for root in U: # build an alternate tree

au = [False] * nU # au, av mark nodes...
au[root] = True # ... covered by the tree
Av = [None] * nV # Av[v] successor of v in the tree
# for every vertex u, slack[u] := (val, v) such that
# val is the smallest slack on the constraints (*)
# with fixed u and v being the corresponding vertex
slack = [(lu[root] + lv[v] - G[root][v], root) for v in V]
while True:

(delta, u), v = min((slack[v], v) for v in V if Av[v] is None)
assert au[u]
if delta > TOLERANCE: # tree is full

for u0 in U: # improve labels
if au[u0]:

lu[u0] -= delta
for v0 in V:

if Av[v0] is not None:
lv[v0] += delta

else:
(val, arg) = slack[v0]
slack[v0] = (val - delta, arg)

assert abs(lu[u] + lv[v] - G[u][v]) <= TOLERANCE # equality
Av[v] = u # add (u, v) to A
if mv[v] is None:

break # alternating path found
u1 = mv[v]
assert not au[u1]
au[u1] = True # add (u1, v) to A
for v1 in V:

if Av[v1] is None: # update margins
alt = (lu[u1] + lv[v1] - G[u1][v1], u1)
if slack[v1] > alt:

slack[v1] = alt
while v is not None: # ... alternating path found

u = Av[v] # along path to root
prec = mu[u]
mv[v] = u # augment matching
mu[u] = v
v = prec

return (mu, sum(lu) + sum(lv))
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Perfect Matching Minimising the Edge of Maximal Weight

Definition
Given a bipartite graph G(U,V,E) weighted on the edges w : E → Z, once again
the goal is to find a perfect matching M . However, instead of maximising the total
edge weight of M , we would like to minimise the maximum of an edge of M , hence
compute minM maxe∈M w(e) over all perfect matchings.

Reduction to the Problem of Maximal Matching
Suppose that the edges are ordered by increasing weight. For a given threshold k, we
could test whether a perfect matching exists in the graph restricted to the first k edges.
As this property is monotone in k, it is possible to solve the problem by binary search
on the interval [|V |,|E|].

However, by exploiting the particular behaviour of the algorithm seeking a perfect
matching, we can avoid the binary search and save a factor of O(log |E|) in the
complexity.

The algorithm seeks to construct a perfect matching by extending the current
matching with an augmenting path, found by constructing a forest of alternating
trees. We initialise the variable k to 0; and maintain a matching M and an alternating
tree for M in the graph restricted to the first k edges. Whenever the tree becomes com-
plete without resulting in an augmenting path, we increment k and add the kth edge
to the graph while eventually augmenting the alternating tree. Each extension of the
matching M has a cost linear in the current number of edges, hence finding the smallest
k such that the graph admits a perfect matching has a complexity of O(|V | · |E|).

Problem
Selfish Cities [spoj:SCITIES]

9.3 Planar Matching without Crossings

input output

Definition
We are given n white points and n black points in the plane. We suppose that these
are non-degenerate, in the sense that no three of the points are collinear. The goal is to
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find a perfect matching between the white points and the black points, such that if we
link all of the matched pairs with line segments, none of these intersect.

Key Observation
Imagine for an instant that the points are matched but some segments cross each
other. Consider two matched pairs u − v and u′ − v′ the segments of which cross,
see Figure 9.6. If we change their assignments to u− v′ and u′ − v, their segments no
longer intersect. Does this operation improve matters somewhat?

Figure 9.6 Uncross two matching segments.

Note that the total number of crossings can increase with this ‘un-crossing’, as in
Figure 9.6. Hence, this is not the correct measure of progress. However, the total length
of the segments has diminished! This observation leads us to a first algorithm.

Algorithm without Guarantee of Performance
Start by arbitrarily matching black and white points. As long two matched pairs exist
with segments that cross uncross them. By the preceding observation, this algorithm
is guaranteed to find a solution. Moreover, our experiments have shown that, in fact,
the performance is quite good in practice!

Algorithm in O(n3) by Reduction to a Minimal-Cost Perfect Matching
We define a complete bipartite graph G(U,V,E), where U are the white points, V

black points and for every u ∈ U and v ∈ V the cost of the edge (u,v) is the
Euclidean distance between the two points. The preceding observation shows that a
perfect matching with minimal cost is necessarily without crossings. Thus, it suffices
to apply the Kuhn–Munkres algorithm to the graph to solve the problem. However, we
can suspect that too much work is being done here, since a matching without crossings
is not necessarily of minimal cost.

Algorithm in O(n log n)
Indeed, a much better algorithm exists that is based on the ham sandwich theorem,
proved by Banach in 1938. This theorem states that given n black points and n white
points in the plane in a non-degenerate configuration, then a line exists such that on
either side of it there are as many black points as white (exactly �n/2� of each). More
precisely, if n is odd, the line passes by a white point and a black point, while if n is
even, the line does not cross any of the points.
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An algorithm from Matousek, Lo and Steiger (1994) computes this line in time
O(n). However, it is complex to implement.

How does this help us? With the guarantee that there are no three collinear points,
we obtain the following property. Either n is even, so that the separating line contains
none of the points, or n is odd and the separating line contains exactly one white
point and one black point. In the latter case, it is correct to match them. And in any
case, we can iterate on the two independent sub-instances separated by the line. This
recursive decomposition has a depth O(log2 n), hence the final algorithm is indeed in
O(n log n).

9.4 Stable Marriages—Gale–Shapley

Definition
Suppose there are n women and n men. Each man ranks the women in order of
preference, and the women rank the men in the same way. A marriage is a perfect
matching in a complete bipartite graph between the men and the women. It is called
stable if a man i and a woman j do not exist such that the man prefers j to his
current wife, and the woman prefers i to her current husband. The goal is to compute
a stable marriage from the 2n stated preferences. The solution is not necessarily
unique.

Complexity
The Gale–Shapley algorithm (1962) solves this problem in time O(n2).

Algorithm
The algorithm starts with no married couples. Then, as long as there are single men,
the algorithm selects a bachelor i and the woman j that i likes best among the women
who have not yet been considered. The algorithm then seeks to marry i with j . The
wedding will take place if j is still single, or if j is married to a man k but prefers i

to k. In this case, k is summarily divorced and sent off to continue partying with the
group of single men.

Analysis
For the complexity, every couple i,j is considered at most once by the algorithm,
and the work to do for each couple takes constant time. For the validity, it suffices to
observe that as the algorithm proceeds, (1) a given woman is married to men that she
prefers more and more, while (2) a given man is married to women that he prefers less
and less. Hence, for a proof by contradiction of the algorithm’s validity, suppose that
at the end a man i married to a woman j ′ and a woman j married to a man i′ exist such
that i prefers j to j ′ and j prefers i to i′. By observation (2), at some point in time
the algorithm examined the couple i,j . However, by (1), the algorithm never married
i with j . This means that at the moment the couple (i,j ) was considered, j must have
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been married with a man k that she preferred to i. This contradicts the fact that she
ends up being married to a man she likes less than i.

Implementation Details
In our implementation, the men are numbered from 0 to n− 1, as are the women. The
input consists of two arrays. The array men contains for each man his list of n preferred
women, in decreasing order. The array women contains the women’s corresponding
lists of preferences. The array women is first transformed into a array rank containing
for each woman j and man i the rank of preference that j has for i. For example, if
rank[j][i] = 0, then i is the preferred man of j , and if rank[j][i’] = 1, then i′ is
the second on the list for j , etc.

Finally, the array spouse associates with each woman the man with whom she is
currently2 married. The queue singles contains the single men, and for each man i,
current_suitor[i] indicates the index of the next woman to be wooed in his list of
preferences.

from collections import deque

def gale_shapley(men, women):
n = len(men)
assert n == len(women)
current_suitor = [0] * n
spouse = [None] * n
rank = [[0] * n for j in range(n)] # build rank
for j in range(n):

for r in range(n):
rank[j][women[j][r]] = r

singles = deque(range(n)) # all men are single and get in the queue
while singles:

i = singles.popleft()
j = men[i][current_suitor[i]]
current_suitor[i] += 1
if spouse[j] is None:

spouse[j] = i
elif rank[j][spouse[j]] < rank[j][i]:

singles.append(i)
else:

singles.put(spouse[j]) # sorry for spouse[j]
spouse[j] = i

return spouse

Problem
Stable Marriage Problem [spoj:STABLEMP]

2 Note from the translator: the divorce lawyers must be rubbing their hands with glee!
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9.5 Maximum Flow by Ford–Fulkerson
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Application
This algorithm can be used to find the bottlenecks in the evacuation of passengers
from an aircraft, or the resistance of an electrical network. In fact, numerous problems
can be modelled as a maximum flow in a graph.

Much of the pioneering work in this domain was done in the 1950s, in the context
of the Cold War. The original paper by Ford and Fulkerson was in fact a memorandum
of the RAND corporation, and was motivated by . . . studies of the Soviet Railway
system3! A top-secret report, ‘Fundamentals of a Method for Evaluating Rail Net
Capacities’, unclassified only in 1999, describes how this algorithm, and the related
minimum-cut algorithms (see Section 9.8), could be used to evaluate the capacity of
the Soviet railway system, and the optimal way to disable it! A fascinating article on
this topic is Schrijver (2002).

Definition
Formally, we are given a directed graph G(V,A) with capacities on the arcs c : A →
R
+ and two distinct vertices: a source s ∈ V and a sink t ∈ V . Without loss of

generality, we can suppose that for each arc (u,v) the arc (v,u) is also present in the
graph, since we can always add arcs of capacity zero without modifying the optimal
solution.

A flow is a function f : A → R, satisfying that:

∀(u,v) ∈ A : f (u,v) = −f (v,u), (9.2)

while respecting the capacities

∀e ∈ A : f (e) ≤ c(e), (9.3)

3 Thanks to Maxim Berman for bringing this to our attention.
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and respecting the conservation of flows at each vertex, other than at the source and
the sink:

∀v ∈ V \{s,t} :
∑

u:(u,v)∈A

f (u,v) = 0. (9.4)

The interpretation of f (u,v) > 0 is that f (u,v) units are flowing through the arc
(u,v). However, if f (u,v) < 0, then no flow is traversing the arc (u,v). The skew
symmetric condition (9.2) has been imposed to simplify the notation in (9.4).

The value of the flow is the quantity emanating from the source,
∑

v f (s,v). The
goal is to find the flow of maximal value.

Non-Directed Graphs
In a non-directed graph, we replace each edge (u,v) by the two arcs (u,v) and (v,u)
with the same capacity.

Residual Graph and Augmenting Paths
For a given flow f , we consider the residual graph consisting of all the arcs (u,v) with
positive residual capacity c(u,v)−f (u,v). In this graph, a path P from s to t is called
an augmenting path, as we can augment the flow along the edges of this path by a
value �, which is the minimal residual capacity along the arcs of P . To preserve (9.2)
as we augment f (u,v), we must diminish f (v,u) by the same amount.

The Ford–Fulkerson Algorithm
The Ford–Fulkerson algorithm has complexity O(|V |·|A|·C) where C = maxa∈A c(a).
For this algorithm to terminate, the capacities must be integers. It repeatedly seeks
an augmenting path P and augments the flow along P . The search for a path is
performed using a depth-first search, and the only guarantee is that at each iteration
the flow increases strictly. The value of a flow is bounded by the total capacities of the
arcs leaving the source, hence by |A| · C. This proves the announced complexity.

Implementation Details
In our implementation, the graph is described with an adjacency list; however, to ease
the manipulation of the flows, the flow is represented by a two-dimensional matrix F .
The procedure augment attempts to augment the flow along a path from u to target
with a value at most val. The procedure returns the amount of the augmentation of the
flow in the case of success and zero otherwise. It looks for this path via a depth-first
search and for this uses the marker visit.
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def _augment(graph, capacity, flow, val, u, target, visit):
visit[u] = True
if u == target:

return val
for v in graph[u]:

cuv = capacity[u][v]
if not visit[v] and cuv > flow[u][v]: # reachable arc

res = min(val, cuv - flow[u][v])
delta = _augment(graph, capacity, flow, res, v, target, visit)
if delta > 0:

flow[u][v] += delta # augment flow
flow[v][u] -= delta
return delta

return 0

def ford_fulkerson(graph, capacity, s, t):
add_reverse_arcs(graph, capacity)
n = len(graph)
flow = [[0] * n for _ in range(n)]
INF = float(’inf’)
while _augment(graph, capacity, flow, INF, s, t, [False] * n) > 0:

pass # work already done in _augment
return (flow, sum(flow[s])) # flow network, amount of flow

Doubling Flow Algorithm
A potential improvement to this algorithm was proposed by Goldberg and Rao (1998)
and has complexity O(|V | · |A| · log C). Rather then blindly augmenting the first path
found, it attempts to improve the flow by a large value each time. More precisely, let C

be the largest capacity on the arcs of the graph, and � the largest power of 2 equal to or
less than C. Then we could repeatedly seek to augment the flow with paths augmenting
the residual capacity by at least �. When this is no longer possible, we continue with
a value of � a factor of two smaller, and so on. The last step with � = 1 finishes when
s and t are disconnected in the residual graph, hence the algorithm indeed computes a
maximum flow.

For the first step, by the definition of C, we know that the maximum flow is bounded
above by |V | · C. Hence, the first step involves at most n augmenting paths. The
search for such a path costs O(|V | + |A|). Since there are only log2 C steps, the total
complexity of this algorithm is O(|V | · |A| · log C).

Problems
Potholers [spoj:POTHOLE]
Maximum Flow [spoj:FLOW]
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9.6 Maximum Flow by Edmonds–Karp

Observation
The Ford–Fulkerson and Goldberg–Rao algorithms have the annoying property that
their complexities depend on the given capacities. Happily, a small transformation
exists that renders the complexity independent of C (see Edmonds and Karp, 1972).

Surprisingly, applying the same algorithm, but first to the shortest augmenting
paths, results in a complexity that is independent of the maximal capacity. The idea
is that the length of the shortest augmenting path increases strictly for at most |E|
iterations. This is due to the following observations:

• Let Lf be the level graph of G, where s is at level 0, all the vertices reachable
from s by a non-saturated arc4 form the level 1, and so on. It is hence an acyclic
subgraph of the residual graph.

• An arc (u,v) is admissible if its flow is strictly below its capacity and if v is on the
next level after u.

• A shortest path from s to t in the residual graph is necessarily a path in the level
graph. If we augment the flow along this path, one of its arcs must become saturated.

• An augmentation along a path can render certain arcs non-saturated, but only arcs
towards lower levels. Hence, the arcs that become admissible cannot decrease the
distance from s to v counted in number of arcs. By symmetry, the distance from v
to t cannot decrease either.

• After at most |E| + 1 iterations, an arc (u,v) and its inverse (v,u) must have been
saturated. This proves that at some point the vertex u has changed level, and by the
preceding observation the distance from s to t has strictly increased.

• As there are only n levels, there are at most |V | · |E| iterations in all.

• The search for a shortest path is done with breadth-first search in time O(|V |). The
total complexity is thus O(|V | · |E|2).

Edmonds–Karp Algorithm in O(|V | · |E|2)
Starting with an empty flow, as long as augmenting paths exist, augment along a
shortest augmenting path.

Implementation Details
The shortest augmenting paths are found with a breadth-first search (BFS), with the
help of a queue Q. The array augm_path has two functions. First, it serves to mark
the vertices already visited by the BFS traversal.5 Then, rather than simply marking
the vertices with a Boolean, we store the predecessor on the path from the source
to the vertex in question. Thus, we can trace back to the source by following the
values of augm_path to augment the flow along this path. The array A contains for
each visited vertex v the minimal residual capacity along the path from the source
to v. With this array, we can determine by how much the flow can be augmented along
the augmenting path found.

4 An arc is saturated if the flow equals the capacity of the arc.
5 Do you understand why it is necessary to mark augm_path[source]?
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def _augment(graph, capacity, flow, source, target):
n = len(graph)
A = [0] * n # A[v] = min residual cap. on path source->v
augm_path = [None] * n # None = node was not visited yet
Q = deque() # BFS
Q.append(source)
augm_path[source] = source
A[source] = float(’inf’)
while Q:

u = Q.popleft()
for v in graph[u]:

cuv = capacity[u][v]
residual = cuv - flow[u][v]
if residual > 0 and augm_path[v] is None:

augm_path[v] = u # store predecessor
A[v] = min(A[u], residual)
if v == target:

break
Q.append(v)

return (augm_path, A[target]) # augmenting path, min residual cap.

def edmonds_karp(graph, capacity, source, target):
add_reverse_arcs(graph, capacity)
V = range(len(graph))
flow = [[0 for v in V] for u in V]
while True:

augm_path, delta = _augment(graph, capacity, flow, source, target)
if delta == 0:

break
v = target # go back to source
while v != source:

u = augm_path[v] # augment flow
flow[u][v] += delta
flow[v][u] -= delta
v = u

return (flow, sum(flow[source])) # flow network, amount of flow

9.7 Maximum Flow by Dinic

The idea of Dinic’s algorithm, discovered at the same time as the preceding algorithm,
is the following. Rather than seeking a set of augmenting paths one by one, up until
the distance between s and t increases, we find such a flow with a single traversal.
This reduces the complexity to O(|V |2 · |E|) (see Dinitz, 2006).

Imagine a function dinic(u,val) that attempts to pass a flow from u to t in the
level graph. The restriction is that the flow is not greater than val. The function then
returns the value of this flow, which can be improved along the path from s to u, by
the successive invocations that led to u. More precisely, to push a flow with value
val from u to t , we visit all the neighbours v of u in the level graph, and recursively
attempt to pass a maximum flow from v to t . The sum is then the maximum flow that
we can push from u to t .
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The function dinic(u,val) then detects if no additional flow can pass from u to t ,
and t thus becomes inaccessible from u. In this case, it removes u from the level graph,
simply by indicating a dummy level −1. Hence, the subsequent calls will no longer
attempt to pass flow through u. Clearly, after O(n) iterations, s and t are disconnected,
and we compute a new level graph, see Figure 9.7.
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Figure 9.7 The evolution of the level graph during the execution of Dinic’s algorithm. Only the
arcs from one level to the next are shown, labelled by f/c where f is the flow and c the
capacity. The dashed lines show the saturated, hence non-passable, arcs, while the dotted lines
show the arcs that will later become part of the level graph. After having augmented the flow
of value 4 along the path s − 2− 4− t , the vertex t becomes disconnected. It is thus necessary
to reconstruct the level graph, shown on the bottom.

Even if an adjacency list is used to represent the graph, it is more practical to
use matrices for the residual capacity and the flow. We must pay attention that each
operation preserves the symmetry f (u,v) = −f (v,u).

Implementation Details
The array level contains the level of a vertex in the level graph. This graph is
recomputed as soon as the sink is no longer accessible from the source. The function
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dinic_step pushes as much flow as possible from u to the sink, without exceeding
the given limit. For this, it pushes a maximum of flow to its neighbours v in the level
graph, and accumulates in val the quantity of flow already pushed. When no further
flow can be sent, the vertex v can be removed from the level graph, by setting its level
to None.

Problem
Fast Maximum Flow [spoj:FASTFLOW]

def dinic(graph, capacity, source, target):
assert source != target
add_reverse_arcs(graph, capacity)
Q = deque()
total = 0
n = len(graph)
flow = [[0] * n for u in range(n)] # flow initially empty
while True: # repeat while we can increase

Q.appendleft(source)
level = [None] * n # build levels, None = inaccessible
level[source] = 0 # by BFS
while Q:

u = Q.pop()
for v in graph[u]:

if level[v] is None and capacity[u][v] > flow[u][v]:
level[v] = level[u] + 1
Q.appendleft(v)

if level[target] is None: # stop if sink is not reachable
return flow, total

up_bound = sum(capacity[source][v] for v in graph[source]) - total
total += _dinic_step(graph, capacity, level, flow, source, target,

up_bound)

def _dinic_step(graph, capacity, level, flow, u, target, limit):
if limit <= 0:

return 0
if u == target:

return limit
val = 0
for v in graph[u]:

residual = capacity[u][v] - flow[u][v]
if level[v] == level[u] + 1 and residual > 0:

z = min(limit, residual)
aug = _dinic_step(graph, capacity, level, flow, v, target, z)
flow[u][v] += aug
flow[v][u] -= aug
val += aug
limit -= aug

if val == 0:
level[u] = None # remove unreachable node

return val
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9.8 Minimum s − t Cut

Application
In a country, there are several roads linking various cities. A railway company wants
to attract customers to its new train line connecting city s with city t , and wishes to
place billboard advertisements along certain of these roads, so that every trip from s

to t must traverse one of these roads. The goal is to minimise the number of billboards
for this task.

Definition
An instance of this problem consists of a directed graph G(V,A) with two distinct
vertices s,t and a cost for each arc c : A → R

+. An s − t cut is a set S ∈ V

containing s but not t . Equivalently, the cut S is sometimes identified by the arcs
leaving S, i.e. the arcs (u,v) with u ∈ S and v �∈ S, see Figure 9.8. The value of the
cut is the total cost of these arcs. The goal is to find the cut with minimal cost.
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Figure 9.8 A minimum s − t cut S of cost 3 + 2 + 2 + 1 = 8. The arcs leaving S are drawn with
solid lines.

Link with the Maximum Flow Problem
Suppose we identify the capacities c of a maximum flow problem with the costs c of
a minimum cut problem. Every flow must traverse the cut, hence the value of any cut
is an upper bound for the value of any flow. But we can do even better:

The Max-Flow-Min-Cut theorem states that the value of the maximum flow is equal
to the value of the minimum cut.

This theorem was shown independently by Elias, Feinstein and Shannon (1956) on
one hand and by Ford and Fulkerson (1956) on the other. The proof follows from a
sequence of several simple observations.

1. For a flow f the quantity of the flow leaving a cut S, i.e. f (S) = ∑
u∈S,v�∈S

f (u,v), is the same for every S. This is simply because for any w �∈ S,w �= t , we
have (by (9.4) and then by (9.2))
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f (S) =
∑

u∈S,v�∈S

f (u,v) =
∑

u∈S,v�∈S

f (u,v)+
∑

v

f (w,v)

=
∑

u∈S,v�∈S,v�=w

f (u,v)+
∑
u∈S

f (u,w)+
∑
v∈S

f (w,v)+
∑
v�∈S

f (w,v)

=
∑

u∈S∪w,v�∈S∪w

f (u,v) = f (S ∪ w).

2. By (9.3), we have f (S) ≤ c(S), i.e. the flow leaving S is never greater than that
of S. This already proves half of the theorem—the value of the maximum flow is
at most the value of the minimum cut.

3. Now, if for a given flow f, we have f (S) < c(S) for every cut S, then an
augmenting path exists. For this, we start with S = {s} and A = ∅. Since
f (S) < c(S), an arc (u,v) exists with u ∈ S,v �∈ S,f (u,v) < c(u,v). We add (u,v)
to A and v to S, and repeat while t �∈ S. During this process, A is a spanning tree
of S rooted at the source, using only non-saturated arcs. Eventually, A will reach
the sink t and contain an augmenting path.

Algorithm
This observation leads us to an algorithm to solve the minimum cut problem. First,
we compute a maximum flow. Then, in the residual graph, we determine the set S of
vertices v reachable from s by arcs with positive residual capacity. Then, S does not
contain t , as the existence of an augmenting path contradicts the optimality of the flow.
The maximal character of S means that every arc leaving S is saturated by the flow, and
its residual capacity is zero. Hence, S is a cut of minimal value.

9.9 s − t Minimum Cut for Planar Graphs

Planar Graphs
The s − t minimum cut problem can be solved more efficiently in the case of a planar
graph6 where the embedding in the plane is given. To simplify the presentation, we
suppose that the graph is a planar grid. This grid is made up of vertices linked by
arcs, which decompose the plane into areas known as faces. Imagine that the grid is
rectangular, that the source is the vertex on the bottom left and the sink is the vertex
on the top right.

Dual Graphs
In the dual graph, each face becomes a vertex, and there are two additional vertices s′

and t ′. The vertex s′ represents the left and top boundary of the grid and the vertex t ′

the right and bottom boundary. In this new graph, two vertices are connected if the

6 A graph is planar if it is possible to draw it in the plane without edges crossing each other. Formally, a
mapping of the vertices to some points must exist (embedding) such that the arcs (segments) intersect
only at their endpoints.
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corresponding faces are adjacent. The edge between the dual vertices has the same
weight as the primal edge at the contact line between the faces.

Key Observation
Every s′ − t ′ path in the dual graph of length w corresponds to an s − t cut in the
primal graph with the same value w, and vice-versa.
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Figure 9.9 On the left, the primal graph. On the right, the dual graph: a minimal-length
s′ − t ′-path corresponds to an s − t minimum cut.

Algorithm in O((|V | + |E|) log |V |)
Hence to compute a minimum cut in this grid, it suffices to find a shortest path in the
dual graph, for example, with Dijkstra’s algorithm.

Variants
An important problem is to find a minimum cut which disconnects the graph, i.e. to
find the smallest s − t cut over all pairs s,t of vertices. This problem can be solved
with the Stoer–Wagner algorithm in time O(|V | · |E| + |V |2 log |V |), which is more
interesting than solving the �(|V |2) s − t cuts for each pair s,t of vertices, see (Stoer
and Wagner, 1997).

Problem
Landscaping [kattis:landscaping]

Example: Coconuts [spoj:COCONUTS]
We are given a graph G(V,E) the vertices of which are coloured white or black. The
goal is to produce a set S ⊆ V of minimal cost in the following sense. First, you
change the colour of each vertex in S; this costs $1 per vertex. Then, there is a fine of
$1 for each arc the vertices of which have a different colour. What is the least amount
we have to pay? This problem can be reduced to a minimal cut problem. First, add
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two vertices s,t to the graph, and then link s to all the black vertices and t to all the
white vertices. Then, an s − t cut in this graph is a set S ∪ {s} and the value of the cut
is exactly the cost of S as described above, see Figure 9.10.

s t

Figure 9.10 From left to right: the given graph; the instance of the min-cut problem with its
optimal solution shaded; and the corresponding solution of cost $3, where two vertices are
coloured white and one edge has endpoints with distinct colours.

9.10 A Transport Problem

A generalisation of the flow problem is the transport problem, where several sources
and sinks exist. Here, each vertex v has a value dv, representing the supply when it is
positive and the demand when it is negative. The instance must satisfy

∑
v∈V dv = 0 in

order to have a solution. The goal is to find a flow transporting the quantities proposed
to the customers, hence a flow respecting the capacities and such that for each vertex
v the flow entering minus the flow leaving is equal to dv. This problem can easily be
reduced to a flow problem by adding a source and a sink vertex and linking the source
to all vertices with a supply, linking all vertices with a demand to the sink and setting
the appropriate capacities to these new arcs.

There is a generalisation of the flow problem, where arcs have costs per unit flow in
addition to capacities. For example, if an arc e has a flow fe = 3 and a cost we = 4, the
cost generated by the flow on this arc is 12. The goal is then to find a flow minimising
the total cost. The flow can either be a maximum flow or a flow respecting all the
demands in the case of a transport problem. The latter is known as a minimal cost
transport problem.

For this problem, algorithms exist that are similar to the Kuhn–Munkres Hun-
garian algorithm (see Ahuja et al., 1993). A first approach could be to start with
a maximum flow, and then try to repeatedly augment the flow along negative-cost
cycles.

9.11 Reductions between Matchings and Flows

Two interesting links exist between the maximum bipartite matching problem and the
maximum flow problem.
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From Flows to Matchings
On one hand, we can use a maximum flow algorithm to compute a maximum matching
in a bipartite graph G(U,V,E). For this, it suffices to construct a new graph G′(V ′,E′)
in which the vertices V ′ = U ∪ V ∪ {s,t} contain two new vertices s,t . The source
vertex s is linked to all of the vertices of U and every vertex of V is linked to the sink
vertex t . Moreover, each arc (u,v) ∈ E corresponds to an arc (u,v) ∈ E′. All the arcs
in G′ have unit capacity.

We represent this graph by levels. The first level contains s, the second U , the
third V and the last t . The flow produced by the algorithm will have the property7

that on every arc the flow has value either 0 or 1. Hence, a flow of value k in G′

corresponds to k paths that traverse each level, without ever returning to a preceding
level. Consequently, since the capacities are unitary, a vertex u ∈ U cannot be crossed
by more than one path and neither nor can the vertices of V . Hence, the arcs between
the levels 2 and 3 traversed by the flow form a matching of size k.

From Matchings to Flows
On the other hand, we can use a maximum bipartite matching algorithm in order to
solve a transport problem with capacities c(e) = 1 for all edges e. Let G(V,E),(dv)v∈V

be an instance of a transport problem.
The first step is to add a source s and a sink t , and then for every vertex v, to

add max{0, − dv} edges (s,v) and max{0,dv} edges (v,t). The result is a graph G′

with eventually multiple edges between two vertices, in which case we speak of a
multigraph. The initial instance of the transport problem has a solution if and only if
the new multigraph G′ has an s − t flow of value � = ∑

v:dv>0 dv.
The second step is to construct a bipartite graph H (V +,V −,E′) admitting a perfect

matching, if and only if G′ has an s − t flow with value �.
For each edge of G′ of the form e = (s,v), we generate the vertex e+ ∈ V +. For

each edge of G′ of the form e = (v,t), we generate the vertex e− ∈ V −. For the other
edges e of G′, we generate two vertices e− ∈ V − and e+ ∈ V + and link them with an
edge. Moreover, for every pair of edges e,f such that the destination of e coincides
with the origin of f , an edge (e+,f−) is generated.

Consider a perfect matching in H of size k. An edge in the matching of the form
(e−,e+) corresponds to the absence of the flow traversing the edge e of G′. An edge in
the matching of the form (e+,f−) with e �= f corresponds to a unit of flow traversing
the edge e and then the edge f . By construction, all edges incident to the source or the
sink are traversed by the flow. The matching corresponds to an s − t flow of value k,
as illustrated in Figure 9.11.

7 In principle, fractional flows are possible, but all reasonable flow algorithms produce an integer flow if
the capacities are integers.
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Figure 9.11 Reduction of the unit-capacity s − t flow problem to a maximal bipartite matching
problem. The maximum flow and corresponding maximum matching are depicted with solid
lines.
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Definition
Suppose we are given a partial order, i.e. an acyclic and transitive directed graph
G(V,A). A chain in G is a directed path and by extension the set of vertices it covers.
A chain decomposition is a set of chains such that every vertex is covered by exactly
one chain. Its size is defined as the number of its chains. An antichain in G is a set S
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of vertices such that u,v ∈ S with (u,v) ∈ A does not exist. The width of the partial
order is defined as the size of the largest antichain. The problem is to compute this
width.

An important relation between chains and antichains is given by Dilworth’s theo-
rem (1950):

The size of the largest antichain equals the size of the smallest chain decomposition.

Showing that the size of the largest antichain is at most the size of the small-
est chain decomposition is straightforward. Assume that there is an antichain longer
than a smallest decomposition in chains. Then, according to the pigeonhole princi-
ple, at least two elements of the antichain should be in the same chain, which is a
contradiction.

It is possible to prove the other direction either by induction on the size of the graph,
or as a reduction to Kőnig’s theorem (see Section 9.1 on page 142): we construct a
bipartite graph H (V,V ′,E) such that V ′ is a copy of V and for each arc (u,v) ∈ A in
the original graph, there is (u,v′) ∈ E, where v′ is a copy of v.

Let M be a maximum matching in the new graph H . By Kőnig’s theorem, a set S

of vertices exists that touches every edge of H , and |M| = |S|.
Every matching in H corresponds to a decomposition in chains: following the edges

of the matching, we can recover chains in G. Every unmatched node in V corresponds
to an endpoint of a chain. Hence, the size of the decomposition is the number of
endpoints |V | − |M|, which is minimum because M is maximum.

We now want to build a longest antichain from S. If we select the nodes v in V

such that neither v nor v′ is in S, then we have at least |V | − |S| elements. If there was
an edge between any pair (v,v′) of these elements, then either v or v′ would be in S,
which is a contradiction. Thus, the selected elements form an antichain, and we have
proved Dilworth’s theorem.

Algorithm in O(|V | · |E|)
This problem can be reduced to a maximum matching problem, see Figure 9.12.

• Construct a bipartite graph H (V,V ′,E) where V ′ is a copy of V and (u,v′) ∈ E if
and only if (u,v) ∈ A.

• Compute a maximal bipartite matching M in H .

• Count the number of unmatched vertices in V . This is the size of the largest
antichain in G, hence the width of the partial order G.

• Consider the set of arcs C in G such that (u,v) ∈ C if and only if (u,v) ∈ M . Then
C is a decomposition of V into a minimal number of chains.

Application: Reservations of Taxis [kattis:taxicab]
Imagine the following situation. A taxi company has gathered reservations for
tomorrow’s trajectories. During the night, it must assign the taxis in its fleet to the
reservations and minimise the number of taxis employed. Each reservation starts from



9.12 Width of a Partial Order—Dilworth 169

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1’

2’

3’

4’

5’

6’

7’

8’

1

2

3

4

5

6

7

8

1’

2’

3’

4’

5’

6’

7’

8’

1

2

3

4

5

6

7

8

Figure 9.12 From left to right: a partial order G, the associated bipartite graph H with a
covering of the vertices S marked in grey, a maximum matching in H , the decomposition into
minimum chains in G associated with an antichain marked in grey.

a precise location in the city at a certain time, in order to reach a given destination.
We suppose that all the source–destination travel times are known. We can thus
decide if the same taxi can honour the reservation j after having completed the
reservation i. In this case, we denote i  j , and the relation  is a partial order
on the day’s reservations. The solution to the problem is simply the width of this
partial order.

Generalisation
If the graph is weighted, we can look for a minimal decomposition into chains which
also minimises the total weight of the arcs. This problem can be solved in time
O(|V |3) by reduction to the problem of minimal-cost perfect matching in a bipartite
graph.

Implementation Details
Our implementation returns an array p encoding an optimal partition, where p[u] is
the index of the chain containing the vertex u, where the chains are numbered starting
with 0. The input is a square matrix M indicating for each pair of vertices u,v the cost
of the arc (u,v) or None if there is no such arc. This implementation supposes that the
vertices are given in topological order, otherwise a topological sort must be done first,
see 6.7. Hence, if the arc (u,v) exists, then u < v.
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def dilworth(graph):
n = len(graph)
match = max_bipartite_matching(graph) # maximum matching
part = [None] * n # partition into chains
nb_chains = 0
for v in range(n - 1, -1, -1): # in inverse topological order

if part[v] is None: # start of chain
u = v
while u is not None: # follow the chain

part[u] = nb_chains # mark
u = match[u]

nb_chains += 1
return part

Problems
Stock Charts [gcj:2009round2C]
Taxi Cab Scheme [icpcarchive:3126] [poj:2060]



10 Trees

Rooted trees are combinatorial structures which appear naturally when considering
objects with a structure of recursive decomposition. This is the case, for example, for
classifications, hierarchies or genealogies. The recursive nature of trees is an invita-
tion to recursive algorithms, and the key to an algorithm is to find the appropriate
method of exploration. In this section, we review certain classic problems concerning
trees.

Formally, a tree is a connected acyclic graph. One of its vertices can be designated
as the root, and in this case we generally speak of a rooted tree. This root provides
the tree with an orientation from parent to child. Starting from a vertex and climbing
up the links, we arrive at the root. The vertices without children are called leaf nodes.
A tree with n vertices contains exactly n − 1 edges. For proof, it suffices to observe
that if we repeatedly remove a leaf from the tree, along with its incident edge, we end
up with an isolated vertex, i.e. a tree with 1 vertex and 0 edges.

The vertices of a rooted tree are partitioned into levels. The root is the unique vertex
at level 0, its child nodes are at level 1 and so on. The largest non-empty level number
defines the depth of the tree, which is also the maximum distance from the root to a
leaf. The subtree rooted at vertex v consists of all vertices and edges reachable from
the root of the original tree only through vertex v. A disjoint union of trees is called a
forest, as the reader might have guessed.

There are numerous dynamic data structures based on trees, such as binary red-
black search trees or interval trees. These structures invoke rebalancing operations on
the trees in order to guarantee logarithmic-time insert, delete and query operations.
However, in programming competitions, the inputs are given only once, and thus it
is often possible to skip the insert/delete operations by directly constructing balanced
structures.

A tree can be represented by essentially one of two methods. The first is the clas-
sic representation of a graph with an adjacency list, which does not distinguish any
particular vertex as the root of the tree. Another representation commonly used is that
of an array of predecessors. For a rooted tree (often with vertex 0 as the root), each
vertex other than the root has a unique predecessor, encoded in the array. Based on the
context, one or the other of the representations will be best suited, while translating
between them can easily be done in linear time.
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def tree_prec_to_adj(prec, root=0):
n = len(prec)
graph = [[prec[u]] for u in range(n)] # add predecessors
graph[root] = []
for u in range(n): # add successors

if u != root:
graph[prec[u]].append(u)

return graph

def tree_adj_to_prec(graph, root=0):
prec = [None] * len(graph)
prec[root] = root # mark to visit root only once
to_visit = [root]
while to_visit: # DFS

node = to_visit.pop()
for neighbor in graph[node]:

if prec[neighbor] is None:
prec[neighbor] = node
to_visit.append(neighbor)

prec[root] = None # put the standard mark for root
return prec

10.1 Huffman Coding

Definition
Let � be a finite alphabet. We denote by �∗ the set of all words on �. Let S ⊆ �∗

be a finite set of words. A binary code for an alphabet � of n characters is a function
c : � → {0,1}∗ such that no word c(a) of the code is a prefix of another word c(b) for
a,b ∈ S. This code applied to each of the letters transforms a word from S into a word
in {0,1}∗, and the property for the prefixes allows an unambiguous decoding of the
original. In general, we would like the encoding to be as short as possible, hence the
more frequent letters should be encoded by shorter words. Formally, given a frequency
function f : S → R

+, we seek a code minimising the cost∑
a∈S

f (a) · |c(a)|.

Algorithm in O(n log n)
A Huffman code can be seen as a binary tree, the leaves of which are the letters of
the alphabet and each node is labelled with the sum of the frequencies of the letters
of the leaves of the subtree rooted at this node. Every inner node is connected to
exactly two child nodes with edges labelled, respectively, by 0 and 1. The concatena-
tion of the labels along the path from the root to a leaf vertex constitutes the code word
c of the corresponding word from S. As such, the cost of c can be expressed as the sum
over a ∈ S, of fa multiplied by the depth of the leaf a in the tree. To construct the tree,
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we begin with a forest, where each word from S is a tree consisting of a single node,
labelled by its frequency. Then, as long as there are multiple trees, we merge the two
trees with minimal frequency by attaching them under a new root, and label the new
root with the sum of the frequencies of the two subtrees, see Figure 10.1. The arcs
connecting the root to the merged subtrees are labelled, respectively and arbitrarily,
with 0 and 1. By an exchange argument, we can show that the encoding thus produced
is optimal (see Huffman, 1952).

To manipulate the trees, we place them in a data structure allowing efficient inser-
tion of elements and retraction of the minimal element: a priority queue. These opera-
tions have a logarithmic cost in the number of objects in the structure. In general, this
structure is implemented with a heap. In Python, such a structure can be found in the
module heapq.

The elements stored in the priority queue are pairs (fA,A) where A is a binary
tree and fA is the total frequency of the letters stored under A. A tree is encoded in
two ways. A letter a represents a tree consisting of a unique leaf (and root) a. A tree
composed of a left subtree � and a right subtree r is represented by the pair (�,r),
which must be a list instead of a tuple to avoid deep copies of the structure.

def huffman(freq):
forest = [] # build forest with singletons
for item in freq:

heappush(forest, (freq[item], item))
while len(forest) > 1:

(f_l, left) = heappop(forest) # merge two trees
(f_r, right) = heappop(forest)
heappush(forest, (f_l + f_r, [left, right]))

code = {} # build code from unique tree
extract(code, forest[0][1], [])
return code

def extract(code, tree, prefix):
if isinstance(tree, list): # inner node

left, right = tree
prefix.append(’0’)
extract(code, left, prefix) # build code recursively
prefix.pop()
prefix.append(’1’)
extract(code, right, prefix) # ... on both subtrees
prefix.pop()

else:
code[tree] = ’’.join(prefix) # extract codeword from prefix

Problems
Huffman Trees [poj:1261]
Variable Radix Huffman Encoding [spoj:VHUFFM]
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10.2 Lowest Common Ancestor
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Input: B, G
Output: A

Definition
Given a tree with n nodes, we would like to answer, in time O(log n), queries for the
lowest common ancestor or LCA of two given nodes u,v, i.e. the unique node u′ such
that u and v are contained in the subtree rooted at u′ and with no direct descendant of
u′ having this property.

Structure in O(log n) per Query
The idea is to store with each node u a level, defined as its distance to the root. In
addition, we maintain an array anc, where anc[k,u] is the ancestor of u at the level
level[u]−2k if it exists and -1 otherwise. Then, we can use these pointers to quickly
climb to the ancestors.

Consider the query LCA(u,v): ‘what is the closest ancestor of u and v?’, where
without loss of generality we can suppose level[u] ≤ level[v]. First, we choose
an ancestor v′ of v at the same level as u, and set u′ = u. Then, iteratively for
each k from log2 n down to 0, if anc[k,u’] �= anc[k,v’], then u′,v′ are replaced by
their ancestors anc[k,u’], anc[k,v’]. At the end, u′ = v′, and this is the common
ancestor we seek. To simplify the code, we use the same variables u,v for u’,v’, once
the input parameters are no longer useful.

Implementation Details
We suppose that the tree is given in the form of an array parent, indicating the
parent node parent[u] for each node u ∈ {0,1, . . . ,n − 1} in the tree. We also
suppose that a parent has a smaller index than its children, and that the root is the
vertex 0.
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Letter Frequency Code
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A 7 00
B 7 01
C 7 10
D 7 11

A 40 1
B 5 01
C 2 001
D 1 000

Figure 10.1 Construction of a Huffman code. Each node is labelled by the sum of the
frequencies of the letters at the leaves of the subtrees rooted at this node. On the right, two
examples of Huffman codes resulting from two different inputs.
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class LowestCommonAncestorShortcuts:
def __init__(self, prec):

n = len(prec)
self.level = [None] * n # build levels
self.level[0] = 0
for u in range(1, n):

self.level[u] = 1 + self.level[prec[u]]
depth = log2ceil(max(self.level[u] for u in range(n))) + 1
self.anc = [[0] * n for _ in range(depth)]
for u in range(n):

self.anc[0][u] = prec[u]
for k in range(1, depth):

for u in range(n):
self.anc[k][u] = self.anc[k - 1][self.anc[k - 1][u]]

def query(self, u, v):
# -- assume w.l.o.g. that v is not higher than u in the tree
if self.level[u] > self.level[v]:

u, v = v, u
# -- put v at the same level as u
depth = len(self.anc)
for k in range(depth-1, -1, -1):

if self.level[u] <= self.level[v] - (1 << k):
v = self.anc[k][v]

assert self.level[u] == self.level[v]
if u == v:

return u
# -- climb until the lowest common ancestor
for k in range(depth-1, -1, -1):

if self.anc[k][u] != self.anc[k][v]:
u = self.anc[k][u]
v = self.anc[k][v]

assert self.anc[0][u] == self.anc[0][v]
return self.anc[0][u]

Alternative Solution by Reduction to a Minimum Over a Range
Consider a depth-first traversal of the tree, as in Figure 10.2. Suppose for simplicity
that the vertices are numbered such that for every vertex u, its number is higher than
that of its parent. We store in the table t the trace of the traversal, adding the vertex
u at the time it was first visited, when it was last visited and between two recursive
descendants. Informally, if we draw a line clockwise around the tree embedded in the
plane, the table t contains the vertices in the order they appear under the pen. We
denote by f [u] the time of the end of processing of the vertex u. Clearly, t contains
between f [u] and f [v] all of the intermediate vertices visited by the traversal between
u and v. Hence, the minimal vertex in this interval is the lowest common ancestor of u

and v. It suffices then to generate in linear time the table t of the depth-first traversal of
the tree and to use a segment tree to answer queries, see Section 4.5 on page 75. The
construction of this structure requires time O(n log n), and the complexity of a query
is O(log n).
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Implementation Details
The input to this implementation is the graph in the form of an adjacency list. It makes
no hypothesis as to the numbering of the vertices. Consequently, the trace dfs_trace
contains not only the vertices but the couple (depth, vertex). As the input could be very
large, the DFS traversal is implemented iteratively using a stack to_visit. The array
next indicates for each vertex how many descendants have already been explored.

1

2

3

4

5

6 7 8

9

1 2 3 4 3 2 5 6 5 7 5 8 5 2 1 9 1

Figure 10.2 Reduction of the problem of lowest common ancestor to the problem of the
minimum over a range of the trace of a depth-first traversal. The query illustrated is LCA(3,7),
which returns the node 2.

class LowestCommonAncestorRMQ:
def __init__(self, graph):

n = len(graph)
dfs_trace = []
self.last = [None] * n
to_visit = [(0, 0, None)] # node 0 is root
succ = [0] * n
while to_visit:

level, node, father = to_visit[-1]
self.last[node] = len(dfs_trace)
dfs_trace.append((level, node))
if succ[node] < len(graph[node]) and \

graph[node][succ[node]] == father:
succ[node] += 1

if succ[node] == len(graph[node]):
to_visit.pop()

else:
neighbor = graph[node][succ[node]]
succ[node] += 1
to_visit.append((level + 1, neighbor, node))

self.rmq = RangeMinQuery(dfs_trace, (float(’inf’), None))
def query(self, u, v):

lu = self.last[u]
lv = self.last[v]
if lu > lv:

lu, lv = lv, lu
return self.rmq.range_min(lu, lv + 1)[1]
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Variant
This structure also permits the computation of the distance between two nodes of the
tree, as the shortest path must pass through the lowest common ancestor.

Problem
Lowest Common Ancestor [spoj:LCA]

10.3 Longest Path in a Tree

Definition
Given a tree, we want to compute the longest path in this tree.

Complexity
The following algorithm is linear in the size of the tree.

Algorithm by Dynamic Programming
As with many problems involving trees, we can here apply dynamic programming by
reasoning on the subtrees. We distinguish a root, thus orienting the edges of the tree.

For every vertex v, consider the subtree with v as root. We assign b[v] as the length
of the longest path in this subtree with endpoint v and t[v] the length of the longest
path in this subtree without restriction. The length b[v] is also known as the depth of
the subtree rooted at v.

If v has no children, then b[v] = t[v] = 0. Otherwise, the following relations hold:

b[v] = 1+max b[u] maximised over the children u of v

t[v] = max{max t[u1], max b[u1]+ 2+ b[u2]} and over the pairs of children u1,u2 of v

The program can dispense with tests on the number of children by using -1 as the
default value. Note that it is not necessary to sort the children of a node to obtain the
two children maximising their b-value.

Some Observations
Let r be an arbitrary vertex of the tree and u a vertex at the maximal distance from r .
Then, a longest path exists in the tree with endpoint u. To be convinced, suppose we
have a longest path with endpoints v1,v2. Let u′ be a vertex on the path from r to u

and v′ a vertex on the path from v1 to v2 that minimises the distance from u′ to v′. If
the two paths intersect, we can choose any vertex in the intersection, see Figure 10.3.

Assign d as the distance in the tree. By the choice of u we have

d(u′,u) ≥ d(u′,v′)+ d(v′,v1)

and by the optimality of the path from v1 to v2,

d(v1,v
′) ≥ d(v′,u′)+ d(u′,u).
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This implies d(u′,v′) = 0, i.e. u′ = v′, and d(v′,v1) = d(v′,u) , thus the path from v2

to u is also a longest path in the tree.

v1 v2

r u

u′

v′

Figure 10.3 An exchange argument shows that if u is a vertex at a maximal distance from r then
a longest path exists starting from u.

Algorithm by Depth-First Search
The preceding observation implies the existence of an alternative algorithm. A depth-
first search (DFS) allows us to identify a vertex at a maximal distance from a given
vertex. Hence, we can choose an arbitrary vertex r , find a vertex v1 at a maximal
distance from r and then again find a vertex v2 at a maximal distance from v1. The
path from v1 to v2 is a path of maximal length.

Variant
We wish to remove the fewest possible edges in a tree so that in the remaining forest
no path is longer than R. To solve this problem, it suffices to remove the critical edges
determined in the dynamic programming solution above.

Consider the processing of a vertex v with its children u1, . . . ,ud ordered such that
b[u1] ≤ . . . ≤ b[ud ]. For every i from d down to 1, we must remove the edge (v,ui)
if b[ui]+ 1 > R or if i > 1 and b[ui−1]+ 2+ b[ui] > R.

Problems
Labyrinth [spoj:LABYR1]
Longest path in a tree [spoj:PT07Z]
SpeedCameras [codility:calcium2015]

10.4 Minimum Weight Spanning Tree—Kruskal

Definition
Given an undirected connected graph, we would like to find a set of edges T such
that every pair of vertices is linked by a path through these edges. In this case, T is
called a spanning tree. The edges have weights, and we want the total weight of our
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set of edges to be minimal. Note that such a set is acyclic—and hence a tree—since
the deletion of an edge of a cycle preserves the connectedness. We thus seek what is
known as a minimum weight spanning tree, see Figure 10.4.

Figure 10.4 Minimum weight spanning tree in a complete graph of 256 vertices where the
weight of each edge is the Euclidean distance separating its endpoints.

Application
The edges of a graph are given with a cost (or weight) w, and we need to purchase at
least cost some edges to render the resulting subgraph connected. Thus, we must find
a set T ⊂ E such that G(V,T ) is connected with

∑
e∈T w(e) minimal.

Algorithm in O(|E| log |E|)
Kruskal’s algorithm (1956) solves this problem in a greedy manner by considering the
edges (u,v) in order of increasing weight and adding an edge (u,v) to the solution set
T if it does not introduce a cycle. The optimality of the algorithm can be shown by an
exchange argument. Let T be the solution produced by the algorithm and let B be an
arbitrary optimal solution. Let e be the first edge chosen by the algorithm that does not
belong to B. Then B ∪ {e} must contain a cycle C. By the choice of e, all the edges of
the cycle C have weight at least as large as e. Hence, replacing one of these edges by
e in B preserves the connectivity of B without increasing the cost, while decreasing
a certain distance between T and B, namely |T \B| + |B\T |. By selecting B as the
optimal solution closest to T , we conclude B = T .

Implementation Details
To visit the edges in order of increasing weight, we create a list of couples (weight,
edge). This list is sorted lexicographically on the couples, then processed in order. We
use a union-find structure (see Section 1.5.5 on page 26) in order to maintain a forest
and efficiently detect if adding an edge forms a cycle.
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def kruskal(graph, weight):
u_f = UnionFind(len(graph))
edges = []
for u, _ in enumerate(graph):

for v in graph[u]:
edges.append((weight[u][v], u, v))

edges.sort()
min_span_tree = []
for w_idx, u_idx, v_idx in edges:

if u_f.union(u_idx, v_idx):
min_span_tree.append((u_idx, v_idx))

return min_span_tree

Prim’s Algorithm
Another algorithm for this problem exists, namely Prim’s algorithm. It works in a
similar manner to Dijkstra’s algorithm. It maintains for a set of vertices S a priority
queue Q containing all the edges leaving S. Initially, S contains a single arbitrary
vertex u. Then, while S does not contain all the vertices, an edge (u,v) with minimal
weight is extracted from Q with u ∈ S,v �∈ S. The vertex v is then added to S and Q

updated accordingly. The complexity of this algorithm is again O(|E| log |E|).

Problems
Cobbled streets [spoj:CSTREET]
Minimum Spanning Tree [spoj:MST]
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This chapter extends the chapter on sequences. It illustrates how a single method,
specifically dynamic programming, allows the resolution of a large variety of prob-
lems. We begin with the presentation of two classic problems—the knapsack and
making change.

11.1 The Knapsack Problem

Definition
Given n objects with weights p0, . . . ,pn−1 and values v0, . . . ,vn−1, and given a knap-
sack with a capacity C, where C is an integer, the problem is to find a subset of
the objects with maximal total value, the total weight of which does not exceed the
capacity C. This problem is NP-hard.

Key Observation
For i ∈ {0, . . . ,n− 1} and c ∈ {0, . . . ,C}, assign Opt[i][c] as the largest value obtain-
able among objects with index 0 to i without their weight exceeding the capacity c. For
the base case i = 0, we have Opt[0][c] = 0 if p0 > c and Opt[0][c] = v0 otherwise.

For larger values of i, at most two possible choices appear for the object of index i:
we can take it or we can leave it. In the first case, the available capacity is reduced by
pi . We thus have the relation:

Opt[i][c] = max

⎧⎨
⎩

Opt[i − 1][c − pi]+ vi case where we take the object,
provided c ≥ pi

Opt[i − 1][c] case where we leave the object.

Algorithm in O(nC)
An algorithm with such a complexity is said to be pseudo-polynomial.1 A Boolean
matrix Sel is maintained in parallel with the dynamic programming matrix Opt.

1 A pseudo-polynomial algorithm is one that is polynomial in the value of the inputs but not in their size.
Here, adding an extra bit to the size of C doubles the running time.
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Figure 11.1 A representation of the array Opt. The computation of each element requires at
most two elements in the preceding row, including the one immediately above. This is a
special case of the problem of the longest path in a grid, described in Section 3.1 on page 62.

It allows us to remember the choices made leading to the values stored in Opt. Once
these matrices are populated following the recurrence formula described above, a
traversal of the elements in reverse order allows the extraction from the matrix Sel
the set of elements providing the optimal total value.

def knapsack(p, v, cmax):
n = len(p)
opt = [[0] * (cmax + 1) for _ in range(n + 1)]
sel = [[False] * (cmax + 1) for _ in range(n + 1)]
# --- basic case
for cap in range(p[0], cmax + 1):

opt[0][cap] = v[0]
sel[0][cap] = True

# --- induction case
for i in range(1, n):

for cap in range(cmax + 1):
if cap >= p[i] and opt[i-1][cap - p[i]] + v[i] > opt[i-1][cap]:

opt[i][cap] = opt[i-1][cap - p[i]] + v[i]
sel[i][cap] = True

else:
opt[i][cap] = opt[i-1][cap]
sel[i][cap] = False

# --- reading solution
cap = cmax
solution = []
for i in range(n-1, -1, -1):

if sel[i][cap]:
solution.append(i)
cap -= p[i]

return (opt[n - 1][cmax], solution)

Problems
The Knapsack Problem [spoj:KNAPSACK]
Knapsack [spoj:KNPSACK]
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11.2 Making Change

Suppose we need to make change for a customer, of value R—the difference between
the purchase price and the amount tendered. We have coins or banknotes at our dis-
posal, of respective value x0, . . . ,xn−1 cents (or whatever!). The problem thus con-
sists of determining the existence of a positive linear combination of x0, . . . ,xn−1

that equals R. You might laugh, as this seems so simple, but in Burma (now known
as Myanmar), there used to be banknotes of 15, 25, 35, 45, 75 and 90 kyats (see
Figure 11.2).

For this problem, banknotes or coins of value xi can contribute multiple times to
the sum (or at least until the merchant runs out . . . ). We compute a Boolean array b,
with b[i,s] indicating whether a combination exists of the coins indexed from 0 to i,
of value exactly s. Clearly, b[−1,0] = T rue, corresponding to the empty coin set,
and b[−1,s] = False for all s > 0. As a solution either does contain a coin of value
xi or does not, we have the recursion b[i,s] = b[i,s − xi] ∨ b[i − 1,s]. The imple-
mentation below avoids the use of index i on b by processing its elements in the right
order.

def coin_change(x, R):
b = [False] * (R + 1)
b[0] = True
for xi in x:

for s in range(xi, R + 1):
b[s] |= b[s - xi]

return b[R]

Figure 11.2 A 45 kyat banknote.

Variant
In the case where a solution exists, we can try to determine a solution using a minimal
number of banknotes or coins.

Observation
You might think that it suffices to consider the currency by decreasing value and
provide at each step the largest banknote or coin that does not exceed the remaining
sum due. This realises a minimal amount of currency for most monetary systems.
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However, if we consider a system with values 1, 3, 4 and 10 and wish to make change
for a sum of 6, the greedy approach results in a solution with the three values 4+1+1,
whereas the unique optimal solution is 3+ 3.

Algorithm in O(nR)
Let A[i][m] be the minimal number of coins to return for an amount 0 ≤ m ≤ R using
the monetary system x0, . . . ,xi−1, with A[i][m] = ∞ if there is no such solution. We
can derive a recurrence relation similar to that obtained for the knapsack problem: for
any amount m, A[0][m] is m/x0 if x0 divides m and∞ otherwise. For i = 1, . . . ,n−1
we have the relation:

A[i][m] = min

⎧⎨
⎩

A[i][m− xi]+ 1 case where we can use the coin,
provided m ≥ xi

A[i − 1][m] case where we cannot use the coin.

11.3 Subset Sum

input output

Definition
Given n positive integers x0, . . . ,xn−1, we would like to know if a subset exists the
sum of which is exactly a given value R. This problem is NP-hard. This problem has
the flavour of the change-making problem, with the twist that every coin can be used
at most once.

Algorithm in O(nR)
We maintain a Boolean array indicating for each index i and every 0 ≤ s ≤ R whether
a subset of the integers x0,x1, . . . ,xi exists the sum of which is s.

Initially, the entries in this array are true only for the index 0 and the empty set.
Then, for every i ∈ {0, . . . ,n− 1} and every s ∈ {0, . . . ,R}, we can produce a subset
of sum s with the integers x0, . . . ,xi , if and only if a subset exists of x0, . . . ,xi−1 of
sum either s or s − xi . We proceed as for change-making, with a slightly different
recursion, namely b[i,s] = b[i − 1,s − xi]|b[i − 1,s].

Again using a carefully chosen loop order for s, our implementation avoids the use
of index i on the array b.
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def subset_sum(x, R):
b = [False] * (R + 1)
b[0] = True
for xi in x:

for s in range(R, xi - 1, -1):
b[s] |= b[s - xi]

return b[R]

Algorithm in O(2	n/2
)
This algorithm is interesting when R is large and n small. We split the input
X = {x0, . . . ,xn−1} into two disjoint subsets A and B of size at most 	n/2
. If
SA (respectively, SB ) is the set of sums of each subset of A (respectively, B), we
construct the set Y = SA, and then the set Z = R − SB containing the values of the
form R−v where v runs over SB . It hence suffices to test if Y and Z have a non-empty
intersection.

def part_sum(x_table, i=0):
if i == len(x_table):

yield 0
else:

for s_idx in part_sum(x_table, i + 1):
yield s_idx
yield s_idx + x_table[i]

def subset_sum(x_table, r_target):
k = len(x_table) // 2 # divide input
y_value = list(part_sum(x_table[:k]))
z_value = [r_target - v for v in part_sum(x_table[k:])]
y_value.sort() # test of intersection between y_value and z_value
z_value.sort()
i = 0
j = 0
while i < len(y_value) and j < len(z_value):

if y_value[i] == z_value[j]:
return True

if y_value[i] < z_value[j]: # increment index of smallest element
i += 1

else:
j += 1

return False

Variant: Partition into Two Subsets as Fairly as Possible
Given x0, . . . ,xn−1, we want to produce S ⊆ {0, . . . ,n − 1} such that |∑i∈S xi −∑

i �∈S xi | is the smallest possible.
There is a simple algorithm with time complexity in O(n

∑
xi). We proceed as for

the partial sum problem, and then search in the Boolean array b for an index s such that
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b[s] is true and s is as close as possible to (
∑

xi)/2. Hence, for every a = 0,1,2, . . .
and d = +1, − 1, consider b[(

∑
xi)/2+ a · d].

Problem
Boat Burglary [spoj:BURGLARY]

11.4 The k-sum Problem

Definition
Given a set of n integers x0, . . . ,xn−1, we want to know if it is possible to select k of
them the sum of which is zero. Without loss of generality, we assume that no element
has value 0, because a solution using 0 is also a solution using only k − 1 elements; a
simpler problem.

Application
For k = 3, this problem is important for discrete geometry, as numerous classic
problems can be reduced to the 3-sum problem. For example, given n triangles, do
they entirely cover another target triangle? Or, given n points, does a line exist that
intersects at least three of these points? For all these problems, algorithms exist in
O(n2). This is essentially optimal, as it is conjectured that an algorithm does not exist
with time complexity O(n2−�(1)) (Gajentaan and Overmars, 1995). For larger values
of k, this problem is important for cryptography.

Algorithm in O(nk−1)
First, an observation for the case k = 2—the problem reduces to deciding if i,j with
xi = −xj exists. If x is sorted, a parallel run-through—as in the merge of two sorted
lists—allows the resolution of the problem (see Section 4.1 on page 73). Otherwise,
we can store the input in a hash table and then for each xi see if −xi can be found in
the table.

For k = 3, we propose an algorithm in time O(n2). We start by sorting x. Then,
for each xj , we look to see if the lists x + xj and −x have an element in common.
Such an element would be of the form xi + xj and −xk with xi + xj + xk = 0, with
i,j,k necessarily being distinct indices because of the absence of zero in the input.
This approach can be generalised for larger values of k, but is less efficient than the
following algorithm.

Algorithm in O(n	k/2
)
We construct a multiset A of integers obtained by summing exactly �k/2� integers of
the input. Similarly, we construct a multiset B obtained by summing exactly 	k/2

integers of the input.
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Then, it suffices to test if the sets A and −B = {−x|x ∈ B} have a non-empty
intersection. For this, we sort A and −B, and then proceed as in the merge of two
sorted lists by conjointly running through the two lists. The complexity is O(n	k/2
).

Implementation Details
To avoid taking several times the same indices, we store in A,B not only the sums but
also couples consisting of each sum as well as the indices realising it. Thus, we can
verify for each couple in A and B with sum 0 if the indices are disjoint.

Problem
4 Values whose Sum is 0 [poj:2785]
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The main object at the heart of computational geometry is the point, representing a
position in some space. A number of classic problems concerning sets of points in the
plane are presented in this chapter.

Points in the plane are naturally represented by their pair of coordinates. An impor-
tant basic operation on points is the orientation test, see Figure 12.1: given three points
a,b,c, are they aligned, i.e. all contained in some line, and if not, will the transforma-
tion a → b → c move the points counter-clockwise (to the left) or clockwise (to the
right)? Formally, we look at the sign of the z-component of the vector cross product
!ab× !bc. If this is positive, then the transformation moves the points counter-clockwise,

if negative then clockwise, and if zero, the points are aligned.

a

b

c

Figure 12.1 The test left_turn(a,b,c) returns True for these points.

def left_turn(a, b, c):
return ((a[0] - c[0]) * (b[1] - c[1]) -

(a[1] - c[1]) * (b[0] - c[0]) > 0)

Whenever the points have non-integer coordinates it is recommended to perform
computations expecting equality with a small tolerance, say 10−7, rather than
comparing to 0, in order to protect from rounding errors.
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12.1 Convex Hull

Input Output

Definition
Given a set of n points, the convex hull is defined as the smallest convex polygon
that encloses all of the points of the set. This polygon is also the polygon of smallest
perimeter containing all of these points.

Imagine a wooden board covered with nails. A rubber band enclosing these nails
represents the convex hull of the nail positions.

Lower Bound on the Time Complexity
In general, it is not possible to compute the convex hull in time o(n log n)1. To
convince yourself, consider a sequence of n numbers a1, . . . ,an. The computation
of the convex hull of the points (a1,a

2
1), . . . ,(an,a

2
n) returns them in an order

corresponding to the natural order of the numbers a1, . . . ,an. This means that if
we could compute the convex hull using only o(n log n) operations, we would obtain a
sort algorithm of the same complexity. However, sorting is known to have complexity
�(n log n), in general.

An Algorithm in O(n log n)
The best known algorithm for this problem is due to Ronald Graham. We present a
variant, proposed by A. M. Andrew, which does not process the points in the order of
their angle around some fixed point, but in the order of their x-coordinate (see Andrew,
1979). Most implementations of Graham’s algorithm make use of trigonometric func-
tions, while Andrew’s algorithm is based solely on the orientation test mentioned
above. As a result, it is slightly easier to implement and can avoid rounding errors.

First, we describe how to obtain the upper part of the convex hull. Points are
processed from left to right, in the order of their x coordinates. A list top contains
the convex hull of the points already processed. When processing some point p, it is
first appended to top. Then, for as long as the second-last point of top renders the
sequence non-convex, it is removed from the list.

1 Yes, this is the little o of Landau’s notation.
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Implementation Details
The lower part bot of the convex hull is obtained in the same manner. The result is
the concatenation of the two lists, reversing the list top in order to obtain the points
of the convex hull in the ‘normal’ order. This is defined as the reverse direction of the
hands of an analogue clock (a quaint object used by preceding generations to keep
track of time, extremely accurate twice each day if perchance it was not wound up).
Note that the first and last elements of the lists are identical, and would therefore
be duplicated in the resulting concatenation. Hence, it is important to remove these
endpoints.

In order to simplify the code presented, the point p is added to the lists top and bot
only after the deletion of elements that would make the sequence non-convex.

def andrew(S):
S.sort()
top = []
bot = []
for p in S:

while len(top) >= 2 and not left_turn(p, top[-1], top[-2]):
top.pop()

top.append(p)
while len(bot) >= 2 and not left_turn(bot[-2], bot[-1], p):

bot.pop()
bot.append(p)

return bot[:-1] + top[:0:-1]

Problems
Doors and Penguins [spoj:DOORSPEN]
Build the Fence [spoj:BSHEEP]

Full Example: Blowing out Candles
See [icpcarchive:8155].

As Jacques-Édouard really likes birthday cakes, he celebrates his birthday every
hour, instead of every year. His friends ordered him a round cake from a famous pastry
shop and placed candles on its top surface. The number of candles equals the age of
Jacques-Édouard in hours. As a result, there is a huge amount of candles burning
on the top of the cake. Jacques-Édouard wants to blow out all of the candles with a
single breath.

You can think of the flames of the candles as being points in a same plane, all
within a disk of radius R (in nanometers) centred at the origin. On that same plane,
the air blown by Jacques-Édouard follows a trajectory that can be described by a
straight strip of width W , which comprises the area between two parallel lines at
distance W , the lines themselves being included in that area. What is the minimum
width W such that Jacques-Édouard can blow out all of the candles if he chooses the
best orientation to blow?
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Input
The first line consists of the integers N and R, separated with a space, where N is
Jacques-Édouard’s age in hours. Then N lines follow, each of them consisting of the
two integer coordinates xi and yi of the ith candle in nanometers, separated with a
space.

Limits
• 3 ≤ N ≤ 2 · 105;

• 10 ≤ R ≤ 2 · 108;

• for 1 ≤ i ≤ N , x2
i + y2

i ≤ R2;

• all points have distinct coordinates.

Output
Print the value W as a floating point number. An additive or multiplicative error of
10−5 is tolerated: if y is the answer, any number either within [y − 10−5;y + 10−5]
or within [(1− 10−5)y;(1+ 10−5)y] is accepted.

Sample input Sample output

3 10 7.0710678118654755
0 0
10 0
0 10

Solution
Without loss of generality, an optimal solution consists of a strip which touches two
of the given points on one border of the strip and another single point on the opposite
border of the strip, see Figure 12.2. Clearly all three points belong to the convex hull
of the given input points and without loss of generality, the two points on the first
border of the strip are consecutive on the convex hull. With this observation done,
the algorithm is quite easy to find. First compute the convex hull. Then loop over all
successive pairs of points pi,pi+1 along the hull, and at every step maintain a point
pk which is furthest from the line going through the points pi,pi+1. This means that
while the pairs of points loop in counter-clockwise order over the convex hull, the
opposite point also moves in counter-clockwise order over the convex hull. But when
the pair makes one step on the hull, the opposite point might remain the same or take
several steps. Nevertheless, the overall complexity of this part of the algorithm is only
O(n) in total. The minimum distance observed for all of these triplets pi,pi+1,pk is
the solution to the problem.

The bottleneck in the overall running time is the computation of the convex hull,
which takes time O(n log n), acceptable complexity given the upper bounds of the
problem.
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12.2 Measures of a Polygon

Given a simple polygon2 p in the form of a list of n points in normal orientation3,
there are several measures of interest, see Figure 12.3.

pi+1
pi

pk

Figure 12.2 The structure of an optimal solution. The points of the convex hull are
shown in white.

Figure 12.3 The number of integer points on the boundary (in black) is 4 the number of integer
points inside (in white) is 4, and the area is 4+ 4/2− 1 = 5.

Area
We can compute the area A in linear time via the formula

A = 1

2

n−1∑
i=0

(xiyi+1 − xi+1yi),

where the index i + 1 is taken modulo n. The ith term corresponds to the signed area
of the triangle (0,pi,pi+1), whose sign depends on the orientation of the triangle.
Removing this triangle reduces the problem to the computation of the area of a
polygon having one less point on the boundary, hence the area of a polygon can be
expressed as a sequence of additions and subtractions of areas of triangles.

2 A polygon is simple if its edges do not cross.
3 Normal orientation means counter-clockwise.
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def area(p):
A = 0
for i, _ in enumerate(p):

A += p[i - 1][0] * p[i][1] - p[i][0] * p[i - 1][1]
return A / 2.

Number of Integer Points on the Boundary
To simplify, we suppose that the points of the polygon have integer coordinates. In
this case, the answer can be determined by summing for each segment [a,b] of p, the
number of integer points between a and b, excluding a so as to not count it twice.
If x is the absolute value of the difference of the x-coordinates of a and b and y the
equivalent for the y-coordinates, then this is equal to:⎧⎨

⎩
y if x = 0
x if y = 0
the LCD of x and y otherwise.

Number of Integer Points in the Interior
This number is obtained by Pick’s theorem, which relates the area A of a polygon with
the number of interior points ni and the number of boundary points nb (with integer
coordinates) by the equation:

A = ni + nb

2
− 1.

Minimal Triangulation of a Convex Polygon
Given a convex polygon, we would like to link its points by segments, such that each
segment between two successive points pi,pi+1 of the polygon forms a triangle with
a point pk . We want to minimise the total length of these additional segments. This
problem can be solved with dynamic programming. If in an optimal triangulation two
successive points pi,pi+1 of the polygon are joined to a point pk , then this triangle
divides the polygon into two pieces, one composed of the points from pk to pi and
the other composed of the points from pi+1 to pk . Each piece forms an independent
problem and can be triangulated in an optimal manner. We can in this way describe a
dynamic program of O(n2) variables, each being the optimum over O(n) alternatives,
and hence with final complexity O(n3).

Input Output
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Problem
Toil for Oil [spoj:OIL]

12.3 Closest Pair of Points

Input Output

Application
In a campground, tents are pitched arbitrarily, and each is occupied by someone with
a radio. We would like to impose a common threshold for the noise level not to be
exceeded, giving a minimum distance between tents, so that nobody is bothered by
the music of their neighbours.

Definition
Given n points p1, . . . ,pn, we want to find the pair of points pi,pj minimising the
Euclidean distance between pi and pj .

Randomised Algorithm in Linear Time
Several algorithms in time O(n log n) have been proposed for this classic problem,
using a sweep line or divide and conquer. We present a randomised algorithm in linear
time, i.e. the expected computation time of which is linear. Based on our experiments,
in practice it is only slightly more efficient than an algorithm using sweep line, but is
much easier to implement.

The algorithm works in phases. The idea is that at each phase, we have already
discovered a pair of points at a distance d and we can question whether another pair
exists at a smaller distance. For this, we divide the space into a grid with step d/2 in
both directions. Choosing a grid step of d/2 instead of d guarantees the presence of
at most one element per cell, easing the processing. Each point thus belongs to some
cell of the grid. Let P be the set of points for which we have already verified that the
distances between each pair of points of P is at least d. Then, each cell of the grid
contains at most one point of P .

The grid is represented by a dictionary G associating with each non-empty cell the
point of P that it contains. At the time of adding a point p to P and to G, it suffices
to test its distance with the points q contained in the 5 × 5 cells around p’s cell,
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p◦

•

•

•

•
•

•

•

•

•

Figure 12.4 Each cell of the grid contains at most one point. At the time a new point p is
considered, it suffices to measure its distance with the points contained in the neighbouring
cells (white).

see Figure 12.4. If a pair of points at distance d ′ < d is discovered, the procedure is
restarted from the beginning with a new grid of step d ′/2.

Complexity
We suppose that the access to G takes constant time, as does the computation of the
cell containing a given point. The key argument is that if the points given as input are
chosen in a uniformly random order, then when the ith point is processed (3 ≤ i ≤ n),
we improve the distance d with probability 1/(i− 1). Hence, the expected complexity
is on the order of

∑n
i=3 i/(i − 1), hence linear in n.

Implementation Details
To compute the cell associated with a point (x,y) in the grid with a given step, it
suffices to divide each coordinate by step and then round down. In Python, the integer
division by the operator // returns the required value, but as a floating point number.
We must convert it to integer type in order to loop over the neighbouring cells, as
the function range admits only integer parameters. In other languages, particular
attention must be paid to negative coordinates. For example, in C++, the expression
(int)(-1.1 / 2) returns 0 rather than the -1 required, and hence the function floor4

of the standard math library should be used.

4 The floor of a real number x is the greatest integer equal to or less than x.
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from math import hypot # hypot(dx, dy) = sqrt(dx * dx + dy * dy)
from random import shuffle

def dist(p, q):
return hypot(p[0] - q[0], p[1] - q[1]) # Euclidean dist.

def cell(point, size):
x, y = point # size = grid cell side length
return (int(x // size), int(y // size))

def improve(S, d):
G = {} # maps grid cell to its point
for p in S: # for every point

a, b = cell(p, d / 2) # determine its grid cell
for a1 in range(a - 2, a + 3):

for b1 in range(b - 2, b + 3):
if (a1, b1) in G: # compare with points

q = G[a1, b1] # in surrounding cells
pq = dist(p, q)
if pq < d: # improvement found

return pq, p, q
G[a, b] = p

return None

def closest_points(S):
shuffle(S)
assert len(S) >= 2
p = S[0] # start with distance between
q = S[1] # first two points
d = dist(p, q)
while d > 0: # distance 0 cannot be improved

r = improve(S, d)
if r: # distance improved

d, p, q = r
else: # r is None: could not improve

break
return p, q

Problems
Closest Point Pair [spoj:CLOPPAIR]
Closest Triplet [spoj:CLOSEST]
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12.4 Simple Rectilinear Polygon

Input
Output not simple simple

Definition
A polygon is rectilinear if its edges alternate between vertical and horizontal orien-
tations. It is simple if its edges do not cross each other. The goal is to test whether a
given rectilinear polygon is simple.

Observation
If a polygon is rectilinear, then each of its vertices has a vertical neighbour as well as
a horizontal neighbour among those that precede or follow it. Hence, the vertices of
the polygon can be of type ‘left’ or ‘right’, and also of type ‘top’ or ‘bottom’; a simple
test of the neighbours suffices to label them, see Figure 12.5.

Algorithm
The algorithm, based on the sweep line technique, is of complexity O(n log n).

left-bottom

left-top

right-bottom

Figure 12.5 The types of points of a rectilinear polygon.

The algorithm will sweep the vertices of the polygon in lexicographical order of the
coordinates, and maintain in a structure S the set of y-coordinates of the left vertices
the right neighbours of which have not yet been visited. Initially, S is empty, and for
each vertex met, we process it as follows:

• If (x,y) is identical to the last vertex processed, there is an intersection of vertices
of the polygon.

• If (x,y) is a left vertex, we check to see if y is already in S: this would mean
that a left vertex with the same y-coordinate has already been visited, hence two
horizontal edges are superposed.

• If (x,y) is a right vertex, then necessarily y is in S, as its left neighbour has already
been visited. Thus y can be removed from S.

• If (x,y) is a bottom vertex, then there is nothing to do.

• If (x,y) is a top vertex, then let (x,y′) be its bottom neighbour. If this is not the
vertex processed just before, then the segment (x,y′) − (x,y) and another vertical
segment are superposed. Otherwise, we inspect S to see if eventually there are
values y′′ such that y′ < y′′ < y: this would mean that a horizontal segment with
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y-coordinate y′′ crosses the current vertical segment (x,y′)− (x,y), and hence once
again the polygon is not simple.

Complexity
For good performance, the following operations on S must be performed efficiently:

• adding and removing elements from S ;

• testing if S contains an element in a given interval [a,b].

If we encode S as an array t such that t[y] = −1 if y ∈ S and t[y] = 0 otherwise, then
determining whether an element of S exists in an interval [a,b] reduces to looking for
a −1 in the range between t[a] and t[b]. We thus represent t using a segment tree,
see Section 4.5 on page 75, so that the requests for the minimum in a range as well as
the updates to t can be performed in logarithmic time, guaranteeing a complexity of
O(n log n) for this algorithm.

Implementation Details
Rather than working with the coordinates of the vertices, which are not bounded, we
consider their rank. Let y0 < · · · , < yk be the list of distinct y-coordinates of vertices
(k ≤ n/2 since the polygon is rectilinear). Hence, yi ∈ S if and only if t[i] = −1. To
determine if S contains an element yj in the interval [yi,yk], it suffices to determine if
the minimum of t between t[i + 1] and t[k − 1] is −1.

def is_simple(polygon):
n = len(polygon)
order = list(range(n))
order.sort(key=lambda i: polygon[i]) # lexicographic order
rank_to_y = list(set(p[1] for p in polygon))
rank_to_y.sort()
y_to_rank = {y: rank for rank, y in enumerate(rank_to_y)}
S = RangeMinQuery([0] * len(rank_to_y)) # sweep structure
last_y = None
for i in order:

x, y = polygon[i]
rank = y_to_rank[y]
# -- type of point
right_x = max(polygon[i - 1][0], polygon[(i + 1) % n][0])
left = x < right_x
below_y = min(polygon[i - 1][1], polygon[(i + 1) % n][1])
high = y > below_y
if left: # y does not need to be in S yet

if S[rank]:
return False # two horizontal segments intersect

S[rank] = -1 # add y to S
else:

S[rank] = 0 # remove y from S
if high:

lo = y_to_rank[below_y] # check S between [lo + 1, rank - 1]
if (below_y != last_y or last_y == y or

rank - lo >= 2 and S.range_min(lo + 1, rank)):
return False # horiz. & vert. segments intersect

last_y = y # remember for next iteration
return True
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Numerous problems involving geometrical figures are concerned with rectangles, for
example when they arise from drawing house plans or from computer graphics. Often,
the rectangles are rectilinear, i.e. with their sides parallel to the axes, thus easing their
handling. An important algorithmic technique in geometry is the sweep line, already
described in Section 13.5 on page 205.

13.1 Forming Rectangles

Definition
Given a set S of n points in the plane, we would like to determine all of the rectangles
with their four corners in S. These rectangles do not necessarily have to be rectilinear.

Algorithm
The complexity is O(n2 + m) where m is the size of the solution. The key observa-
tion is that the two pairs of diagonally opposed corners of a rectangle have a com-
mon signature. This consists of their midpoint and the distance between them. It
then suffices to store in a dictionary all pairs of points p,q with key (c,d) where
c = (p + q)/2 is the midpoint between p and q and d = |q − p| is the distance.
The couples having the same signature are those forming the rectangles of S, see
Figure 13.1.

Figure 13.1 A common signature between pairs of opposing corners: the diagonals intersect at
their midpoint and are of the same length.
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Implementation Details
Often in programming contests the input consists of integers. For improved efficiency,
one should in these cases avoid the use of floating point numbers whenever possible.
Hence, in this implementation, when calculating c, the division by 2 is skipped, as is
the square root for the calculation of d .

def rectangles_from_points(S):
answ = 0
pairs = {}
for j, _ in enumerate(S):

for i in range(j): # loop over point pairs (p,q)
px, py = S[i]
qx, qy = S[j]
center = (px + qx, py + qy)
dist = (px - qx) ** 2 + (py - qy) ** 2
signature = (center, dist)
if signature in pairs:

answ += len(pairs[signature])
pairs[signature].append((i, j))

else:
pairs[signature] = [(i, j)]

return answ

Problem
Rectangle [spoj:HMSRECT]

13.2 Largest Square in a Grid

Definition
Given a black and white image in the form of an n×m array of pixels, we would like
to determine the largest completely black square, see Figure 13.2.

(i,j)

Figure 13.2 The black square of maximal size k having for bottom right-hand corner (i,j )
contains three black squares of size k − 1 finishing on the corners (i,j − 1), (i − 1,j − 1) and
(i − 1,j ).
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Algorithm in Linear Time
This problem can easily be solved with dynamic programming. Suppose the rows are
numbered from top to bottom and the columns from left to right. A square is said to
finish at (i,j ) if its bottom right-hand corner is (i,j ). If the square is of size k, it is
made up of cells (i′,j ′) for i − k < i′ ≤ i and j − k < j ′ ≤ j .

For each cell (i,j ) of the grid, we seek the largest integer k such that the square of
size k finishing on (i,j ) is completely black. Assign A[i,j ] as this value. If the cell
(i,j ) is white, then A[i,j ] = 0, which corresponds to the absence of a black square.

Every black square of size k contains four black square of size k − 1. Hence,
A[i,j ] = k for k ≥ 1 if and only if each of the three values A[i − 1,j ],
A[i − 1,j − 1],A[i,j − 1] is at least k − 1. Conversely, if the cell (i,j ) is white
and these three values are at least �, then the union of the corresponding squares
together with the cell (i,j ) contain a square of size �+ 1 finishing at (i,j ).

These observations lead to the following recurrence formula:

A[i,j ]

=
{

0 if the cell (i,j ) is white,
1+min{A[i − 1,j ],A[i − 1,j − 1],A[i,j − 1]} otherwise.

Problem
Making Chess Boards [spoj:CT101CC]

13.3 Largest Rectangle in a Histogram

Definition
Given a histogram in the form of an array of non-negative integers x0, . . . ,xn−1, the
goal is to place a rectangle of maximal area within this histogram. This means finding
an interval [�,r) that maximises the area (r − �) × h, where the height h is h =
min�≤i<r xi .

Application
At the bottom of the Atlantic Ocean lies a telecommunications cable linking Europe
and North America. The technical characteristics of this cable vary with time, as
a function of the movements of the ocean, fluctuations of temperature, etc. Hence,
at each moment there is a maximal bandwidth possible for transmission defining a
function max bandwidth vs. time. Changing the transmission bandwidth for a connec-
tion is possible but requires an exchange between the terminals that prohibits any
communication for a short time. Imagine that you know in advance the maximal
bandwidths possibles for each of the 60× 24 minutes of a day. You would like to find
an interval of time and a bandwidth allowing the transmission of a maximal quantity
of information without a disconnection. This problem reduces to finding a rectangle
with maximal area within a histogram.
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10

12

15

16

Figure 13.3 As long as the histogram is increasing, the corners are pushed onto the stack.
When the histogram decreases, the higher corners must be popped, the corresponding
candidate rectangles tested and then the last popped corner is pushed again but with the
smaller height.

Algorithm in Linear Time
The algorithm is based on the sweep line technique. For each prefix x0, . . . ,xi−1 of the
array, we maintain a collection of rectangles whose right-hand side has not yet been
encountered. They are defined by a pair of integers (�,h), where � is the left-hand side
and h is the height. It thus suffices to consider the rectangles maximal for inclusion,
hence h is the minimum over x�,x�+1, . . . ,xi−1 and � = 0 or x�−1 < h. Thus, the
rectangle cannot be enlarged to the left or upwards without leaving the histogram. We
store these pairs of integers in a stack ordered by h. An interesting observation: the
pairs are also ordered by �.

Now, for each value xi , it is possible that the right side of certain rectangles has been
found. This is notably the case for all of the rectangles encoded (�,h) on the stack with
h > xi . The width of such a rectangle is i − �. However, the value xi will also create
a new pair (�′,xi). The left side �′ is either the value � of the last rectangle popped, or
�′ = i if no element was popped, see Figure 13.3. To simplify the implementation, we
pop a pair (�,h) even when h = xi .

def rectangles_from_histogram(H):
best = (float(’-inf’), 0, 0, 0)
S = []
H2 = H + [float(’-inf’)] # extra element to empty the queue
for right, _ in enumerate(H2):

x = H2[right]
left = right
while len(S) > 0 and S[-1][1] >= x:

left, height = S.pop()
# first element is area of candidate
rect = (height * (right - left), left, height, right)
if rect > best:

best = rect
S.append((left, x))

return best
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Problems
Largest Rectangle in a Histogram [spoj:HISTOGRA]
Galerie d’art [prologin:2012:galerie]

13.4 Largest Rectangle in a Grid

Application
Given a building site with trees scattered about the lot, we wish to find a maximal
rectangular area on which to build a house without cutting any trees.

Definition
Given a black and white image in the form of an array of n × m pixels, we want to
determine the largest completely black rectangle. Here, a rectangle is the intersection
between a set of contiguous rows and a set of contiguous columns, see Figure 13.4.

Figure 13.4 A black rectangle of maximal area in a grid.

Algorithm in Linear Time
The solution is based on the reduction to the search of the largest rectangle within
a histogram. For each row i, we look for the largest black rectangle with its base
on row i. For this, we maintain an array t which for each column j gives the max-
imal number k such that between (i,j ) and (i,j − k + 1) all the pixels are black.
Then, t defines a histogram under which we seek the largest rectangle. The array t is
easily updated from one row to the next, as a function of the colours of the pixels in
each column.
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def rectangles_from_grid(P, black=1):
rows = len(P)
cols = len(P[0])
t = [0] * cols
best = None
for i in range(rows):

for j in range(cols):
if P[i][j] == black:

t[j] += 1
else:

t[j] = 0
(area, left, height, right) = rectangles_from_histogram(t)
alt = (area, left, i, right, i-height)
if best is None or alt > best:

best = alt
return best

13.5 Union of Rectangles

We now introduce a simple problem for which a plethora of interesting solutions exist.

Definition
Given n rectilinear rectangles, we would like to compute the area of their union. The
same techniques could be used to compute the perimeter or the number of connected
regions.

Key Observation
A first step is to make the complexity of our algorithms independent of the coordinates
of the rectangles: these coordinates span at most 2n points on each axis. Therefore,
they lie on a grid made up of O(n2) cells, which are either entirely covered by a
rectangle or disjoint from every rectangle, see Figure 13.5.

Figure 13.5 Grid with O(n) rows and O(n) columns. Each cell is either included in the union of
rectangles or is disjoint from it.
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Algorithm in O(n3)
A first simple solution consists then of determining a Boolean array indicating for
each cell if it is contained in the union of rectangles. The area of the union can then
be computed by a simple sum of the areas of the cells. The work performed for each
rectangle is O(n2), which leads to the announced complexity of O(n3).

def rectangles_contains_point(R, x, y):
for x1, y1, x2, y2 in R:

if x1 <= x < x2 and y1 <= y < y2:
return True

return False

def union_rectangles_naive(R):
X = set() # set of all x coordinates in the input
Y = set() # same for y
for x1, y1, x2, y2 in R:

assert x1 <= x2 and y1 <= y2
X.add(x1)
X.add(x2)
Y.add(y1)
Y.add(y2)

j_to_x = list(sorted(X))
i_to_y = list(sorted(Y))
# X and Y partition space into a grid
area = 0
for j in range(len(j_to_x) - 1): # loop over columns in grid

x1 = j_to_x[j]
x2 = j_to_x[j + 1]
for i in range(len(i_to_y) - 1): # loop over rows

y1 = i_to_y[i] # (x1,...,y2) is the grid cell
y2 = i_to_y[i + 1]
if rectangles_contains_point(R, x1, y1):

area += (y2 - y1) * (x2 - x1) # cell is covered
return area

Key Observations and Skeleton
When dealing with a problem posed in two dimensions, it is often interesting to
reduce it to the one-dimensional version. In this case, the one-dimensional analogue
consists of computing the total length spanned by the union of a set of intervals.
Let union_intervals be a function solving this problem. It can be implemented
in time O(n log n) by processing the endpoints of the given intervals from left to
right. Whenever a left endpoint is encountered, a counter opened is incremented, and
whenever a right endpoint is encountered, the counter is decremented. The size of
the union is cumulated in a variable union_size, to which we add the difference
between the current and the previous endpoint in case opened is positive (before it
is updated). For technical reasons, the function union_intervals needs to be able to
process multisets of intervals. These can easily be implemented in Python using the
Counter class.
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from collections import Counter
OPENING = +1 # constants for events
CLOSING = -1 # -1 has higher priority
def union_intervals(intervals):

union_size = 0
events = []
for x1, x2 in intervals:

for _ in range(intervals[x1, x2]):
assert x1 <= x2
events.append((x1, OPENING))
events.append((x2, CLOSING))

previous_x = 0 # arbitrary initial value
# ok, because opened == 0 at first event
opened = 0
for x, offset in sorted(events):

if opened > 0:
union_size += x - previous_x

previous_x = x
opened += offset

return union_size

Algorithm in O(n2 log n)
How can the function union_intervals help us to solve the two-dimensional
problem? Imagine a horizontal line, sweeping over the plane from bottom to top.
Its intersection with the given rectangles at any given time consists of a set of
intervals. Whenever the line reaches the bottom of a rectangle, a corresponding
interval is added to the set, which is later removed when the sweep line reaches
the top of the rectangle. The algorithm maintains the set of these intervals in a
variable current_intervals. Similar to the one-dimensional version, the sweep
line progresses by following a sorted event list. This list stores instructions for
adding or removing intervals from the set current_intervals. Every instruction
comes with a y-coordinate, which is used to define the order of their processing.
The total area of the union of the rectangles is stored in a variable area. When
processing an event, the sweep line is moved vertically by the difference between
the y-coordinate of the current event and the previous event. This difference multi-
plied by union_intervals(current_intervals) is the area we need to add to the
variable area.

The event list can be sorted in time O(n log n), before the events are processed.
The bottleneck in processing an event is the running time of union_intervals, which
is also O(n log n). This leads to a total time complexity of O(n2 log n).

As a first structure, we can maintain a set of intervals: adding and removing
intervals is done in constant time. Computing the total length spanned by their union
can be done in O(n log n) by scanning them in increasing (left, right) coordinates, so
the total complexity is O(n2 log n).
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def union_rectangles(R):
events = []
for x1, y1, x2, y2 in R: # initialize events

assert x1 <= x2 and y1 <= y2
events.append((y1, OPENING, x1, x2))
events.append((y2, CLOSING, x1, x2))

current_intervals = Counter()
area = 0
previous_y = 0 # arbitrary initial value,
# ok, because union_intervals is 0 at first event
for y, offset, x1, x2 in sorted(events): # sweep top down

area += (y - previous_y) * union_intervals(current_intervals)
previous_y = y
current_intervals[x1, x2] += offset

return area

Algorithm in O(n2)
There is an easy trick to shave off the logarithmic factor. The bottleneck in the func-
tion union_intervals is sorting the endpoints of the given intervals. To avoid this
operation, we consider the set of all x-coordinates in the input (left or right borders of
the rectangles) and use it to divide the horizontal axis into O(n) elementary segments.
We maintain an array of integers indicating for each segment how many rectangles
cover it. Then adding or removing a new interval takes O(n) time, as we must modify
the counters of segments covered by the current interval. Computing the total length
spanned by their union also takes O(n), so the total complexity is O(n2).
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def union_rectangles_fast(R):
X = set() # set of all x coordinates in the input
events = [] # events for the sweep line
for x1, y1, x2, y2 in R:

assert x1 <= x2 and y1 <= y2
X.add(x1)
X.add(x2)
events.append((y1, OPENING, x1, x2))
events.append((y2, CLOSING, x1, x2))

# array of x coordinates in left to right order
i_to_x = list(sorted(X))
# inverse dictionary maps x coordinate to its rank
x_to_i = {xi: i for i, xi in enumerate(i_to_x)}
# nb_current_rectangles[i] = number of rectangles intersected
# by the sweepline in interval [i_to_x[i], i_to_x[i + 1]]
nb_current_rectangles = [0] * (len(i_to_x) - 1)
area = 0
length_union_intervals = 0
previous_y = 0 # arbitrary initial value,
# because length is 0 at first iteration
for y, offset, x1, x2 in sorted(events):

area += (y - previous_y) * length_union_intervals
i1 = x_to_i[x1]
i2 = x_to_i[x2] # update nb_current_rectangles
for j in range(i1, i2):

length_interval = i_to_x[j + 1] - i_to_x[j]
if nb_current_rectangles[j] == 0:

length_union_intervals += length_interval
nb_current_rectangles[j] += offset
if nb_current_rectangles[j] == 0:

length_union_intervals -= length_interval
previous_y = y

return area

Algorithm in O(n log n)
Is it possible to do even better by using a segment tree, a data structure used for
queries for a minimum over a range of indices (see Section 4.5 on page 75). Indeed,
the previous algorithm involves adding 1 or removing 1 over a range of indices, and
computing a sum over indices with nonzero values. Our segment tree is initialised with
two arrays L and t of size 2n − 1. The ith segment is of length L[i], and t plays the
role of the array described in the previous algorithm: t[i] counts how many rectangles
cover the ith segment.

This segment tree allows the following operations:

• change(i, k, d) adds the value d to the elements t[j ] for i ≤ j < k;

• cover() returns the sum
∑

L[j ] taken over the indices j such that t[j ] �= 0.

The operation change is called whenever the sweep line encounters the bottom side
of a rectangle (d = 1) or its top side (d = −1). The method cover() returns the total
length spanned by the current intervals.
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The data structure consists of a binary tree, where each node p is responsible for a
range of indices I in t (and hence also in L). It possesses three attributes:

• w[p] is the sum of L[j ] over j ∈ I .

• c[p] is a quantity added to every t[j ] for j ∈ I .

• s[p] is the sum of L[j ] over every j ∈ I such that t[j ] �= 0.

The root of the tree is node 1 and the result of cover() is stored in s[1]. The array t

is stored implicitly in the attribute c. The value t[j ] is the sum of c[p] over all of the
nodes p along the path from the root to the leaf node corresponding to j . As is the case
for the structure for the minimum over a range (minimum range query), the update can
be done in logarithmic time. See Figure 13.6 on the next page for an example of usage
of such a segment tree.

The complexity of O(n log n) is justified by the required sort of the events.

class CoverQuery:
def __init__(self, L):

assert L != [] # L is assumed sorted
self.N = 1
while self.N < len(L):

self.N *= 2
self.c = [0] * (2 * self.N) # --- covered
self.s = [0] * (2 * self.N) # --- score
self.w = [0] * (2 * self.N) # --- length
for i, _ in enumerate(L):

self.w[self.N + i] = L[i]
for p in range(self.N - 1, 0, -1):

self.w[p] = self.w[2 * p] + self.w[2 * p + 1]
def cover(self):

return self.s[1]

def change(self, i, k, offset):
self._change(1, 0, self.N, i, k, offset)

def _change(self, p, start, span, i, k, offset):
if start + span <= i or k <= start: # --- disjoint

return
if i <= start and start + span <= k: # --- included

self.c[p] += offset
else:

self._change(2 * p, start, span // 2, i, k, offset)
self._change(2 * p + 1, start + span // 2, span // 2,

i, k, offset)
if self.c[p] == 0:

if p >= self.N: # --- leaf
self.s[p] = 0

else:
self.s[p] = self.s[2 * p] + self.s[2 * p + 1]

else:
self.s[p] = self.w[p]
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Figure 13.6 Illustration of the sweep and the data structure.

def union_rectangles_fastest(R):
if R == []: # segment tree would fail on an empty list

return 0
X = set() # set of all x coordinates in the input
events = [] # events for the sweep line
for Rj in R:

(x1, y1, x2, y2) = Rj
assert x1 <= x2 and y1 <= y2
X.add(x1)
X.add(x2)
events.append((y1, OPENING, x1, x2))
events.append((y2, CLOSING, x1, x2))

i_to_x = list(sorted(X))
# inverse dictionary
x_to_i = {i_to_x[i]: i for i in range(len(i_to_x))}
L = [i_to_x[i + 1] - i_to_x[i] for i in range(len(i_to_x) - 1)]
C = CoverQuery(L)
area = 0
previous_y = 0 # arbitrary initial value,
# because C.cover() is 0 at first iteration
for y, offset, x1, x2 in sorted(events):

area += (y - previous_y) * C.cover()
i1 = x_to_i[x1]
i2 = x_to_i[x2]
C.change(i1, i2, offset)
previous_y = y

return area
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13.6 Union of Disjoint Rectangles

Definition
Given n disjoint rectilinear rectangles, we wish to determine all pairs of adjacent
rectangles.

Application
This can serve to compute the perimeter of the union, for example, by subtracting
from the total of the perimeters of the rectangles the length of the contacts between
all the adjacent rectangles. This last value must be taken with a factor of 2, as a
unit of contact removes a unit of perimeter from each rectangle. Another application
is to determine the connected components formed by the adjacent rectangles, see
Figure 13.7.

1

2 3

4
5

6

Figure 13.7 Detect the adjacency between the rectangles (2,4),(2,5),(3,5) and (4,5).

Algorithm in O(n log n)
The algorithm uses the sweep line technique. We first explain how to determine the
pairs of rectangles having their left or right sides touching. The case for the top
and bottom sides is identical. A list of events is made up of the four corners of
each of the n rectangles. Each event is an n-tuple (x,y,i,c), where (x,y) are the
coordinates of the corner c of the ith rectangle, and c takes on the values 0,1,2,3
for bottom-right, top-right, bottom-left and top-left, respectively. The events are then
processed in lexicographical order, which comes down to a sweep of the corners from
left to right, and within a single column from bottom to top. In the case of identical
corners, we consider first the top corners of the rectangles.

It then suffices to maintain the list of rectangles for which we have already seen
a bottom corner in the column, but not yet the top corner. To guarantee that the
rectangles are disjoint, this list contains at most two rectangles, a rectangle to the
left of the column and one to the right. A bottom corner adds a rectangle to this list,
whereas a top corner removes one. Finally, two rectangles are adjacent if and only if
they are found in this list at the same time.
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Variant
If in the problem statement, we consider two rectangles to be adjacent if even only a
corner is shared, then it suffices to change the priorities and, for two identical points,
first process the bottom corners and then the top corners.

Problem
City Park [icpcarchive:6889]
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This short chapter presents a few efficient implementations of classic manipulations
of numbers: arithmetical operations, evaluation of expressions, resolution of linear
systems, and sequences of multiplication of matrices.

14.1 GCD

Definition
Given two integers a,b we seek the largest integer p such that a and b can be expressed
as integer multiples of p; this is their greatest common divisor (GCD).

The calculation of the GCD can be implemented recursively to be very efficient.
A mnemonic trick: from the second iteration on, we arrange to always have the second
argument smaller than the first: a mod b < b.

def pgcd(a, b):
return a if b == 0 else pgcd(b, a % b)

The complexity of this division version of Euclid’s algorithm is O(loga + logb).
Indeed, the first parameter diminishes by at least a factor of two every second iteration.

14.2 Bézout Coefficients

Definition
For two integers a and b, we would like to find two integers u and v such that au+bv =
d where d is the GCD of a and b.

This calculation is based on an observation similar to the above. If a = qb+r , then
au+ bv = d corresponds to (qb + r)u+ bv = d, or bu′ + rv′ = d for{

u′ = qu+ v
v′ = u

⇔
{

u = v′

v = u′ − qv′ .

This calculation also terminates in O(log a + log b) steps.
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Variant
Certain problems involve the calculation of extremely large numbers, and conse-
quently require a response modulo a large prime number p in order to test if the
solution is correct. Since p is prime, we can easily divide by an integer a non-multiple
of p: a and p are relatively prime, hence their Bézout coefficients satisfy au+pv = 1,
hence au is equal to 1 modulo p and u is the inverse of a. Hence, to divide by a, we
can instead multiply by u (mod p).

def bezout(a, b):
if b == 0:

return (1, 0)
u, v = bezout(b, a % b)
return (v, u - (a // b) * v)

def inv(a, p):
return bezout(a, p)[0] % p

14.3 Binomial Coefficients

In the calculation of
(
n
k

)
, equal to n! /(k! (n − k)! ), it is risky to calculate

n(n − 1) · · · (n − k + 1) and k! separately, given the possibility of an overflow.
We can exploit the fact that the product of i consecutive integers always contains a
term divisible by i.

def binom(n, k):
prod = 1
for i in range(k):

prod = (prod * (n - i)) // (i + 1)
return prod

For most of these problems, the calculation of binomial coefficients needs to be
taken modulo a prime number p. The code then becomes as follows, with complexity
O(k(log k + log p)), relying on the calculation of the Bézout coefficients.

def binom_modulo(n, k, p):
prod = 1
for i in range(k):

prod = (prod * (n - i) * inv(i + 1, p)) % p
return prod

An alternative is to calculate Pascal’s triangle by dynamic programming, which
could be interesting if

(
n
k

)
needs to be calculated for numerous pairs n,k.
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14.4 Fast Exponentiation

Definition
Given a,b we wish to calculate ab. Again, as the result risks being enormous, we are
often asked to perform the calculation modulo a given integer p, but this does not
change the nature of the problem.

Algorithm in O(log b)
The naive approach performs b−1 multiplications by a. However, we can rapidly cal-
culate the powers of a of the form a1,a2,a4,a8, . . . using the relation a2k ·a2k = a2k+1

.
A trick consists of combining these values according to the binary decomposition of b.
Example:

a13 = a8+4+1

= a8 · a4 · a1.

For this calculation, it suffices to generate O(log2 b) powers of a. The implementation
below is reproduced with the gracious permission of Louis Abraham. At the ith itera-
tion, the variable a contains a2i

0 modulo p and the variable b contains �b0/2i�, where
a0,b0 are the inputs to the function. Thus, it suffices to test the parity bit of b in the
body of the loop to determine the binary decomposition of b. The operation b »= 1 is
equivalent to performing an integer division of b by 2.

def fast_exponentiation(a, b, q):
assert a >= 0 and b >= 0 and q >= 1
result = 1
while b:

if b % 2 == 1:
result = (result * a) % q

a = (a * a) % q
b >>= 1

return result

Variant
This technique can also be applied to matrix multiplications. Let A be a matrix and b a
positive integer. Rapid exponentiation allows the calculation of Ab with only O(log b)
matrix multiplications.

Problems
The last digit [spoj:LASTDIG]
Tiling a grid with dominoes [spoj:GNY07H]
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14.5 Prime Numbers

The Sieve of Eratosthenes
Given n, we seek all prime numbers less than n. The Sieve of Eratosthenes is a simple
method to execute this task. We begin with a list of all the integers less than n, with
initially 0 and 1 marked. Then, for each p = 2,3,4, . . . ,n − 1, if p is not marked,
then it is prime, and in this case we mark all the multiples of p. The complexity of this
procedure is delicate to analyse; it is in fact O(n log log n).

Implementation Details
The proposed implementation skips marking 0, 1 as well as the multiples of 2. This is
why the iteration over p is done with a step of 2, in order to test only the odd numbers.

def eratosthene(n):
P = [True] * n
answ = [2]
for i in range(3, n, 2):

if P[i]:
answ.append(i)
for j in range(2 * i, n, i):

P[j] = False
return answ

The Gries–Misra Sieve
A deficiency of the preceding algorithm is that it marks the same composite number
several times. An improvement was proposed by David Gries and Jayadev Misra in
1978 that gets around this deficiency and has a theoretical complexity of O(n). We
thus gain a factor of log log n. Their algorithm is not much longer but the multiplicative
constant in the complexity is a bit larger. Our experiments have shown an improvement
in the execution time with, in general, a factor 1/2 for the interpretor pypy, but a
deterioration by a factor 3 for the interpretor python3.

Dexter Kozen showed that the algorithm could at the same time produce an array
factor associating with every integer 2 ≤ x < n the smallest non-trivial integer factor
of x. This array is very useful in the generation of the decomposition in prime factors
of a given integer.

The algorithm is based on the unique prime decomposition of a composite integer
(fundamental theorem of arithmetic). Indeed, an integer y can be written in the form

y = factor[y] · x

with factor[y] ≤ factor[x].
The algorithm enumerates all of the composite integers by looping first on x =

2, . . . ,n − 1, and then over all the prime numbers p, with p ≤ factor[x], where p
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plays the role of factor[y] in the expression y = p ·x. The algorithm is correct, since
at the time of processing x, all prime numbers less than or equal to x have been found,
as well as the smallest factor of x. As every number y between 2 and n−1 is examined
exactly once, the complexity of the algorithm is O(n).

def gries_misra(n):
primes = []
factor = [0] * n
for x in range(2, n):

if not factor[x]: # no factor found
factor[x] = x # meaning x is prime
primes.append(x)

for p in primes: # loop over primes found so far
if p > factor[x] or p * x >= n:

break
factor[p * x] = p # p is the smallest factor of p * x

return primes, factor

Problems
The Spiral of Primes [icpcarchive:2120]
Prime or Not [spoj:PON]
Bazinga! [spoj:DCEPC505]

14.6 Evaluate an Arithmetical Expression

Definition
Given an expression obeying a certain fixed syntax, we would like to construct the
syntax (parse) tree or evaluate the value of the expression, see Figure 14.1.

+

2 /

*

3 4

2

Figure 14.1 The syntax tree associated with the expression 2+ (3× 4)/2.

Approaches
In general, this problem is solved by decomposing the stream containing the expres-
sion into a series of lexical tokens, using a tool called a scanner or lexical analyzer.
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Then, as a function of the lexical tokens identified, we construct the syntax tree accord-
ing to a grammar, using a tool known as a parser.

However, if the syntax is similar to that of arithmetical expressions, an evaluation
method using two stacks can be used, which is much simpler to implement. One stack
contains the values and the other the operators. Each value encountered is pushed
as-is onto the value stack. For each operator p encountered, before pushing it onto the
operator stack, the following must be performed: as long as the top element q of the
operator stack has priority at least as high as p, we pop q, as well as the last two a,b,
and then push onto the value stack the result of the expression a q b (the result of the
operation q on the operands a,b).

In this manner, the evaluation of operators is delayed until the priority of the oper-
ators forces the evaluation, see Figure 14.2.

A special case is needed to distinguish the binary minus operator from the unary
minus sign for integer constants. Usually, it suffices to test if the previous token was
an operator or a closing parenthesis.

Spreadsheet Example
Consider a spreadsheet where each cell can contain either a value or an arithmetical
expression. This expression can be composed of numerical constants and identifiers
of cells, linked by the operators - + * / and parentheses.

We represent an expression by an integer, a character string or a triplet composed
of an operator and two operands. The numerical evaluation of an expression is realised
by the following recursive function, where cell is a dictionary, associating the names
of cells to their contents.

token value stack operator stack

2 2 ∅
+ 2 +

3 2,3 +

* 2,3 +,*

4 2,3,4 +,*

/ 2,12 +
2,12 +,/

2 2,12,2 +,/

; 2,6 +
8 ∅

Figure 14.2 Example of the evaluation of the expression 2+ 3× 4/2 with the marker ‘ ; ’ as
‘end of expression’.
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def arithm_expr_eval(cell, expr):
if isinstance(expr, tuple):

(left, operand, right) = expr
lval = arithm_expr_eval(cell, left)
rval = arithm_expr_eval(cell, right)
if operand == ’+’:

return lval + rval
if operand == ’-’:

return lval - rval
if operand == ’*’:

return lval * rval
if operand == ’/’:

return lval // rval
elif isinstance(expr, int):

return expr
else:

cell[expr] = arithm_expr_eval(cell, cell[expr])
return cell[expr]

The syntax tree is constructed following the method described above. Note the
particular handling of the parentheses. A left parenthesis is always pushed onto
the operator stack without doing anything else. Meeting a right parenthesis provokes
the popping of the stack and the construction of the expressions, until the top of the
operator stack corresponds to the matching left parenthesis; this is in turn popped. To
completely empty the stacks at the end of the processing, we add to the stream a token
‘ ; ’ as end of expression, and assign it the minimal priority.

PRIORITY = {’;’: 0, ’(’: 1, ’)’: 2, ’-’: 3, ’+’: 3, ’*’: 4, ’/’: 4}

def arithm_expr_parse(line_tokens):
vals = []
ops = []
for tok in line_tokens + [’;’]:

if tok in PRIORITY: # tok is an operator
while (tok != ’(’ and ops and

PRIORITY[ops[-1]] >= PRIORITY[tok]):
right = vals.pop()
left = vals.pop()
vals.append((left, ops.pop(), right))

if tok == ’)’:
ops.pop() # this is the corresponding ’(’

else:
ops.append(tok)

elif tok.isdigit(): # tok is an integer
vals.append(int(tok))

else: # tok is an identifier
vals.append(tok)

return vals.pop()
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Beware of a Trap!
An error often committed during the implementation of this code is to write:

vals.append((vals.pop(), ops.pop(), vals.pop()))

which has the undesirable effect of inverting the left and right values of the expression,
because of the order of evaluation of the arguments of the method append.

Problems
Boolean Logic [spoj:BOOLE]
Arithmetic Expressions [spoj:AREX]
Cells [spoj:IPCELLS]

14.7 System of Linear Equations

Definition
A system of linear equations is composed of n variables and m linear equations.
Formally, a matrix A of dimension n × m is given, along with a column vector b

of size m. The goal is to find a vector x such that Ax = b.

Application: Random Walk
Suppose we have a connected graph with the arcs labelled by probabilities, where the
total weight of each outgoing arc is equal to 1. Such a graph is known as a Markov
chain. A random walk is a walk that starts from a vertex u0, then at the current vertex
u an arc (u,v), chosen with the associated probability, is traversed. We want to know
for each vertex v the expected time xv for the walk to reach v. Then, by definition
xu0 = 0 and xv =

∑
u(xu + 1)puv, where puv is the probability associated with the

arc (u,v) or 0 if it does not exist.
However, another application exists concerning random walks. After t steps, each

vertex has a certain probability for the presence of the walker. In certain cases, this
walk converges to a stationary distribution on the vertices. The calculation of this
distribution boils down to solving a system of linear equations, where A essentially
encodes the probabilities of the arcs, and the solution sought x is the stationary
distribution.

Application: A System of Weights and Springs
Imagine a system composed of heavy balls linked by springs of negligible weight.
Certain springs are hanging from the ceiling, and the springs can be compressed or
stretched, see Figure 14.3. Given the position and weight of the balls, we would like
to know if the system is stable or if it will start moving. The system will be stable if
for each spring we have values, representing the force exercised on its ends, such that
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the forces (including gravitational) cancel out for every ball. This is again a problem
of resolution of a system of linear equations.

Application: Geometrical Intersection
In geometry, lines and hyperplanes are defined by linear equations. Determining their
intersection reduces to the resolution of a system of linear equations.

Algorithm in O(n2m)
If A were the identity matrix, then the solution of the system would be b. We are going
to diagonalise A to obtain a form as close as possible to this ideal situation.

For this, we apply transformations that preserve the solutions of the system, such as
changing the order of variables, exchanging two equations, multiplying one equation
by a constant and adding one equation to another.

Figure 14.3 A system of balls and springs.

In order to simplify these manipulations and not modify the parameters A and b,
we store the system of equations in a matrix S, which is composed of a copy of A

along with an extra column containing b and an extra row containing the indices of
the variables. Thus, when the columns are exchanged in S, it is possible to remember
to which variable each column corresponds.

The invariant is the following: after k iterations, the first k columns of S are all
zero, except on the diagonal where there are 1’s, see Figure 14.4.

To obtain the invariant, we divide the kth row of S—hence the kth equation—by
S[k,k] if it is non-zero, which brings a 1 to the index (k,k). Then we subtract the kth
equation from every equation i �= k, but multiplied by the factor S[i,k], bringing a 0
to all of the indices (i,k) for every i �= k, as required by the invariant.
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What can we do if S[k,k] is nonetheless zero? We begin before these operations
by looking for an element S[i,j ] of greatest absolute value in the rectangle between
S[k,k] and S[m − 1,n − 1]. This element is typically called the pivot; we choose the
one of greatest absolute value in order to minimise rounding errors. Then we swap the
columns k and j as well as the rows k and i. These operations preserve the solutions
of the system.

But what if this rectangle contains nothing but zeros? In this case, the diagonalisa-
tion is terminated, and the solution must be extracted in the following manner.

If the diagonalisation terminates prematurely after k iterations, and the rows of S

from k to m − 1 are all zero, then the last column of these rows must be verified.
If an element exists with a non-zero value v, then it represents the contradiction
0 = v, and hence the system can be stated to be without a solution. Otherwise, the
system admits at least one solution. Let k be the number of iterations executed by
the diagonalisation. We have k ≤ min{n,m}. If k < n, then the system has several
solutions. To choose one, we decide to set to 0 the variables corresponding to the
columns k to n − 1 in S. Then, the values of the other variables are given in the last
column, forced by the diagonal of 1 in S. Finally, if k = n, then the solution is unique.

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
0 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

b =

⎛
⎜⎜⎜⎜⎜⎜⎝

·
·
·
·
·
·

⎞
⎟⎟⎟⎟⎟⎟⎠

Figure 14.4 Structure of the invariant for k = 3.

Implementation Details
As we work here with floating point numbers, with rounding errors possible for each
calculation, it is necessary to permit a slight tolerance when testing equality to zero.
When subtracting the kth row from the ith row, we must assign the coefficient S[i][k]
to a variable fact, as the operation will change the value of S[i][k]. To calculate
the solution exactly, we could work with fractions instead of floating point numbers.
In this case, it is important to reduce the fractions at each iteration, otherwise the
numerators and denominators of the solution could contain an exponential number of
digits. Without the normalisation, the Gauss–Jordan algorithm is not polynomial, but
happily the Python class Fraction reduces the fractions at each operation.

Variants
If the matrix is sparse, i.e. it contains only a small number of non-zero elements per
row and column, then the execution time can be reduced from O(n2m) to O(n).
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def is_zero(x): # tolerance
return -1e-6 < x and x < 1e-6
# replace with x == 0 si we are handling Fraction elements

GJ_ZERO_SOLUTIONS = 0
GJ_SINGLE_SOLUTION = 1
GJ_SEVERAL_SOLUTIONS = 2

def gauss_jordan(A, x, b):
n = len(x)
m = len(b)
assert len(A) == m and len(A[0]) == n
S = [] # put linear system in a single matrix S
for i in range(m):

S.append(A[i][:] + [b[i]])
S.append(list(range(n))) # indices in x
k = diagonalize(S, n, m)
if k < m:

for i in range(k, m):
if not is_zero(S[i][n]):

return GJ_ZERO_SOLUTIONS
for j in range(k):

x[S[m][j]] = S[j][n]
if k < n:

for j in range(k, n):
x[S[m][j]] = 0

return GJ_SEVERAL_SOLUTIONS
return GJ_SINGLE_SOLUTION

def diagonalize(S, n, m):
for k in range(min(n, m)):

val, i, j = max((abs(S[i][j]), i, j)
for i in range(k, m) for j in range(k, n))

if is_zero(val):
return k

S[i], S[k] = S[k], S[i] # swap lines k, i
for r in range(m + 1): # swap columns k, j

S[r][j], S[r][k] = S[r][k], S[r][j]
pivot = float(S[k][k]) # without float if Fraction elements
for j in range(k, n + 1):

S[k][j] /= pivot # divide line k by pivot
for i in range(m): # remove line k scaled by line i

if i != k:
fact = S[i][k]
for j in range(k, n + 1):

S[i][j] -= fact * S[k][j]
return min(n, m)

Problems
Ars Longa [icpcarchive:3563]
Linear Equation Solver [spoj:LINQSOLV]
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Figure 14.5 What parentheses should be added to multiply a sequence of matrices with the least
total number of operations?

14.8 Multiplication of a Matrix Sequence

Definition
Given n matrices M1, . . . ,Mn, where the ith matrix has ri rows and ci columns, with
ci = ri+1 for every 1 ≤ i < n. We would like to calculate the product M1M2 · · ·Mn

with as few operations as possible. By associativity, it is possible to place the paren-
theses in different ways. We have the following equality by associativity of the matrix
product, but the number of operations could differ, based on the sizes of the various
sub-products:

(((M1M2)M3)M4 = M1(M2(M3(M4))) = (M1M2)(M3M4).

To multiply two matrices Mi and Mi+1, we use the standard algorithm which executes
ricici+1 numerical multiplications. The goal is to find how to place the parentheses so
as to multiply with least cost, see Figure 14.5.

Algorithm in O(n2)
The recurrence formula1 is simple. The last multiplication multiplies the result of
M1 · · ·Mk with the result of Mk+1 · · ·Mn for a certain 1 ≤ k < n. Let opt(i,j ) be the
minimal cost for calculating Mi · · ·Mj . Then opt(i,i) = 0 and for i < j

opt(i,j ) = min
i≤k<j

(opt(i,k)+ opt(k + 1,j )+ rickcj . (14.1)

If we wish to compute both the cost of the optimal order and the order itself, we
must store side by side with the matrix opt a matrix arg, containing the index k which
realises the minimisation (14.1). This is done in the following implementation. The

1 The complexity concerns only the computation of the optimal placement of parentheses, and not the
operation of matrix multiplication itself.
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function opt_mult(M,opt,i,j) then optimally multiplies Mi · · ·Mj according to the
information contained in opt.

Note the order in which the indices i,j are processed. By considering the increasing
order of j− i, we can be sure that the values for the couples i,k and k+1,j , necessary
for the identification of the minimum in (14.1), will already have been computed.

def matrix_mult_opt_order(M):
n = len(M)
r = [len(Mi) for Mi in M]
c = [len(Mi[0]) for Mi in M]
opt = [[0 for j in range(n)] for i in range(n)]
arg = [[None for j in range(n)] for i in range(n)]
for j_i in range(1, n): # loop on i, j of increasing j - i = j_i

for i in range(n - j_i):
j = i + j_i
opt[i][j] = float(’inf’)
for k in range(i, j):

alt = opt[i][k] + opt[k + 1][j] + r[i] * c[k] * c[j]
if opt[i][j] > alt:

opt[i][j] = alt
arg[i][j] = k

return opt, arg

def matrix_chain_mult(M):
opt, arg = matrix_mult_opt_order(M)
return _apply_order(M, arg, 0, len(M)-1)

def _apply_order(M, arg, i, j):
# --- multiply matrices from M[i] to M[j] included
if i == j:

return M[i]
k = arg[i][j] # --- follow placement of parentheses
A = _apply_order(M, arg, i, k)
B = _apply_order(M, arg, k + 1, j)
row_A = range(len(A))
row_B = range(len(B))
col_B = range(len(B[0]))
return [[sum(A[a][b] * B[b][c] for b in row_B)

for c in col_B] for a in row_A]

An even better algorithm exists in O(n log n), see (Hu and Shing, 1984), but we do
not present it here.

Problems
Mixtures [spoj:Mixtures]
The Safe Secret [kattis:safesecret]
Sweet and Sour Rock [spoj:ROCK]
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For some combinatorial problems, no polynomial time algorithm is known. The usual
last-gasp (desperate!) solution is then to exhaustively explore the space of poten-
tial solutions. The word combinatorial here refers to structures which are combined
from simpler structures. Examples include the construction of trees by a combination
of subtrees, or the assembly of tilings with small tiles. Exhaustive exploration then
consists of exploring the implicit tree of possible constructions in order to detect a
solution. The nodes of the tree represent partial constructions, and when they can no
longer be extended to a solution, for example by the violation of some constraint, the
exploration backs up and examines alternate branches. This technique is known as
backtracking.

We will illustrate these principles with a simple example.

15.1 All Paths for a Laser

Definition
Suppose there is a rectangular grid, surrounded by a border with two openings in
the top row, one on the left and one on the right. Certain cells of the grid contain
double-faced mirrors, which can be oriented in two possible directions, diagonal or
anti-diagonal, see Figure 15.1. The goal is to orient the mirrors in such a way that
a laser beam entering by the left opening exits by the right opening. The laser beam
traverses the empty cells horizontally or vertically, but when it hits a mirror, it is
deflected by 90 degrees to the right or to the left, depending on the orientation of the
mirror. If the beam hits the boundary of the grid, it is absorbed.

Reduction to a Problem of Maximum Matching
This reduction was constructed with Martin Hoefer and Lê Thánh Dũng Nguyễn in
2016, but was probably already known.

The problem can be modelled by a graph, see Figure 15.2, which admits a perfect
matching (where all the vertices are matched) if and only if the laser problem has a
solution. Each mirror generates up to four vertices, one for each direction, top, left,
bottom, right. We assign (a,d) as the vertex corresponding to the mirror a and in the
direction d . If a mirror b is accessible from the mirror a by the direction d, then the
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Figure 15.1 An orientation of the mirrors permitting the laser beam to traverse the grid.

vertices (a,d) and (b, − d) are present in the graph and linked by an edge, where −d

denotes the opposite direction to d . However, if the direction d from a mirror a leads
to the wall, then there is no vertex (a,d) present in the graph. The construction is
completed with a vertex per opening, linked to the first accessible mirror, if such exists.

Figure 15.2 Reduction of the laser problem (left) to a perfect matching problem (right). The
matching edges are shown with solid lines.

We can verify that every perfect matching in this graph corresponds to a solution
of the laser problem and vice-versa. We distinguish the rectilinear edges linking the
mirrors, and the diagonal edges linking different vertices associated with the same
mirror. The interpretation is as follows. A rectilinear edge in the matching indicates
that the beam will not follow this path, whereas a diagonal edge, say between vertices
(a,d) and (a,e), indicates that the beam can be reflected from the mirror a by the
directions d et e.

The graph thus produced is not bipartite. To compute a maximal matching we must
thus resort to Jack Edmonds’ ‘flowers and petals’ algorithm (1965), with a complexity
of O(n2), where n is the number of mirrors. However, this is quite long and difficult
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to implement, which is why we propose in this section an alternative solution, which
in contrast has exponential complexity in the worst case.

Algorithm
We propose a solution by exhaustive exploration. For each mirror, we store a state
that can be one of three types: the two orientations and a type ‘without orientation’.
Initially, the mirrors are all without orientation. Then the route of the laser beam is
simulated, from its entrance by the left opening.

• When an oriented mirror is hit, the beam is reflected as a function of the orientation.

• When the beam hits a mirror without orientation, two recursive calls are made, one
for each possible orientation of the mirror. If one of these calls finds a solution, it
is returned. If neither call finds a solution, the mirror is returned to the unoriented
position and a failure code is returned.

• If the beam hits the boundary, the recursive procedure terminates with a failure
code. The exploration then backtracks and considers other possible orientations.

• Finally, if ever the opening on the top right is reached, the solution is returned.

Implementation Details
The n mirrors whose positions are given as input are numbered from 0 to n− 1. Two
dummy mirrors are placed at the openings and numbered n and n + 1. The program
produces an array L with the coordinates and the indices of the mirrors.

The four possible directions of the beam are represented by the integers from 0 to 3,
and the two orientations by 0,1. An array reflex of dimension 4 × 2 indicates the
change of direction made by the beam if it arrived in a given direction on a mirror
with a given orientation.

In a pre-computation, the successive mirrors of a same row or a same column are
linked together, with the help of the array next_. For a mirror i and a direction d, the
element next_[i][d] indicates the index of the next mirror the beam will hit when it
leaves i in the direction d. This entry is set to None if the beam is sent to the boundary.
To populate the array next_, the array L is scanned first of all row by row and then
column by column. Note the sort function that reverses the indices row and column
for the lexicographic sort.

The variables last_i, last_r, last_c contain the information concerning the
last mirror seen in the scan. If the last mirror is in the same row as the current mirror
(for the scan row by row), then the two must be linked by the indications of their
respective references in the array next_.
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# directions
UP = 0
LEFT = 1
DOWN = 2
RIGHT = 3
# orientations None:? 0:/ 1:\

# destination UP LEFT DOWN RIGHT
reflex = [[RIGHT, LEFT], [DOWN, UP], [LEFT, RIGHT], [UP, DOWN]]

def laser_mirrors(rows, cols, mir):
# build structures
n = len(mir)
orien = [None] * (n + 2)
orien[n] = 0 # arbitrary orientations
orien[n + 1] = 0
succ = [[None for direc in range(4)] for i in range(n + 2)]
L = [(mir[i][0], mir[i][1], i) for i in range(n)]
L.append((0, -1, n)) # enter
L.append((0, cols, n + 1)) # exit
last_r, last_i = None, None
for (r, c, i) in sorted(L): # sweep by row

if last_r == r:
succ[i][LEFT] = last_i
succ[last_i][RIGHT] = i

last_r, last_i = r, i
last_c = None
for (r, c, i) in sorted(L, key=lambda rci: (rci[1], rci[0])):

if last_c == c: # sweep by column
succ[i][UP] = last_i
succ[last_i][DOWN] = i

last_c, last_i = c, i
if solve(succ, orien, n, RIGHT): # exploration

return orien[:n]
return None

The actual exploration is implemented recursively. For this kind of difficult
problem, the instances are often quite small, so that there is little risk of overflowing
the stack during the recursive calls. Note that after unsuccessfully exploring two
subtrees corresponding to two possible orientations of the mirror j , the program sets
back the contents of the variables to the correct state, i.e. to the position without
orientation.
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def solve(succ, orien, i, direc):
assert orien[i] is not None
j = succ[i][direc]
if j is None: # basic case

return False
if j == len(orien) - 1:

return True
if orien[j] is None: # try both orientations

for x in [0, 1]:
orien[j] = x
if solve(succ, orien, j, reflex[direc][x]):

return True
orien[j] = None
return False

return solve(succ, orien, j, reflex[direc][orien[j]])

15.2 The Exact Cover Problem

The Rolls-Royce of exhaustive search algorithms is the algorithm of dancing
links (Knuth, 2000), which solves a quite general problem known as exact cover.
Many problems can be reduced to it, hence mastering this technique can provide a
real advantage in competitions.

Definition
The problem of exact cover concerns a set of points U , called the universe, and a
collection of subsets of U , S ⊆ 2U , see Figure 15.3. A set A ⊆ U is said to cover
x ∈ U if x ∈ A. The goal is to find a selection of sets of S, i.e. a collection S∗ ⊆ S,
covering each element of the universe exactly once.

In terms of a characteristic matrix, the problem can be described as follows. On
input, we are given a binary matrix M , the columns of which represent the elements
of the universe, and the rows represent the sets of the collection S. The element 〈x,A〉
of the matrix is 1 if and only if x ∈ A. On output, we must generate a set of rows S∗
such that the matrix restricted to S∗ contains exactly one 1 in each column.

Applications
The game Sudoku can be seen as an exact cover problem, see Section 15.4 on
page 238. This is also the case for the tiling problem, wherein a set of tiles must be
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used to cover an m× n grid without overlap. Each tile must be used exactly once, and
each cell of the grid must be covered by exactly one tile. The cells and the tiles thus
form the elements of the universe, whereas the placements of individual tiles constitute
the sets.

The ‘Dancing Links’ algorithm
This algorithm uses an exhaustive exploration as described in the preceding section.
Its particularity resides in the choice of the data structures for its implementation.

First, the algorithm chooses an element e, ideally included in a minimum of sets
of S, hence the most constrained. This choice has a good chance to generate small
exploration trees. As the solution must cover e, it necessarily contains one and only
one of the sets A ∈ S with e ∈ A. The search space is thus divided by the choice of
such a subset. For each set A with e ∈ A, a solution S∗ is sought for the subproblem,
and in the positive case, the solution S∗ ∪ {A} is returned as a solution to the initial
problem.

The subproblem in question is constructed from 〈U,S〉 by removing the ele-
ments of A from U , since each element f ∈ A is already covered by A, and it
must not be covered a second time. Moreover, all the sets B intersecting A are
removed from S, otherwise some elements of A would be covered several times, see
Figure 15.3.

In terms of a characteristic matrix M , the general structure of the algorithm is as
follows. If the matrix M is empty, then the empty set, which is a solution, is returned.
Otherwise, look for the column c of M containing as few 1’s as possible,1 Loop over
all rows r that could cover c, i.e. Mrc = 1. For each such r , perform the following:
remove from M the row r as well as all the columns c′ covered by r (Mrc′ = 1). If
the matrix thus obtained admits a solution S then return S ∪ {r}. Otherwise restore M ,
and try again with another choice for r .

Compact Representation by Doubly Linked Lists
To compactly represent the sparse matrix M , we store only the cells of M containing
a 1, and double-link them both vertically and horizontally, see Figure 15.4. Then, for
a given c, we can easily find all rows r such that Mrc = 1 by using the vertical links,
and for a given r , all the c′ such that Mrc′ = 1 by using the horizontal links. Each cell
thus requires four fields L,R,U,D, standing for left, right, up and down, to code these
double links.

1 This choice reduces the number of branches at this point, and hopefully the size of the search tree.
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set S3
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Figure 15.3 Three subproblems resulting from the choice of the element e = 3. Note that the
third subproblem does not have a solution, as the element 0 cannot be covered.

For each column, we also require a header cell, which is included in the vertical
linking, in order to gain access to the column. At the initialisation of the structure, the
headers are stored in an array col indexed by the column numbers. Finally, we have a
particular cell h, included in the horizontal linking of the column headers, in order to
access them. This cell does not use the fields U,D.

Each cell possesses two additional fields S, C, the role of which depends on the
type of cell. For the matrix cells, S contains the row number and C contains the column
header. For the column header cells, S contains the number of 1’s in the column, and
the field C is ignored. The cell h ignores both of these fields.
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5,6
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Figure 15.4 A binary matrix M , above its encoding and below the result of covering the
column 0. The lists are circular, and the links leaving an edge of the image re-enter by the
opposite edge.
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class Cell:
def __init__(self, horiz, verti, S, C):

self.S = S
self.C = C
if horiz:

self.L = horiz.L
self.R = horiz
self.L.R = self
self.R.L = self

else:
self.L = self
self.R = self

if verti:
self.U = verti.U
self.D = verti
self.U.D = self
self.D.U = self

else:
self.U = self
self.D = self

def hide_verti(self):
self.U.D = self.D
self.D.U = self.U

def unhide_verti(self):
self.D.U = self
self.U.D = self

def hide_horiz(self):
self.L.R = self.R
self.R.L = self.L

def unhide_horiz(self):
self.R.L = self
self.L.R = self

The Links
The idea of the algorithm of dancing links is due to Hitotsumatsu and Noshita in 1979
and was described by Donald Knuth (2000). To remove element c from a doubly
linked list, it suffices to change the targets of the pointers of its neighbours, see
Figure 15.5. To reinsert it in the list, it suffices to perform the reverse operations in
the opposite order.

We use this observation to easily remove and restore a column of the matrix.
The operation of covering a column c consists of removing it from the horizontal
list of column headers, and for each row r with Mrc = 1, removing from the
vertical lists all the cells corresponding to positions (r,c′) in M with Mrc′ = 1.
We must make sure to keep up to date the counter S in the header of the cell c′,
decrementing it.
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c

c

Figure 15.5 The operation hide removes element c from a doubly linked list. By preserving the
pointers of c, it is then easy to reinsert it at its initial position.

def cover(c): # c = heading cell of the column to cover
assert c.C is None # must be a heading cell
c.hide_horiz()
i = c.D
while i != c:

j = i.R
while j != i:

j.hide_verti()
j.C.S -= 1 # one fewer entry in this column
j = j.R

i = i.D

def uncover(c):
assert c.C is None
i = c.U
while i != c:

j = i.L
while j != i:

j.C.S += 1 # one more entry in this column
j.unhide_verti()
j = j.L

i = i.U
c.unhide_horiz()

The Search
In the search procedure, we simply scan all the columns to find a column minimising
the number of elements, hence with minimal counter S. We could accelerate this
search by using a priority queue for the columns, but this would make the procedure
of covering a column more costly. The following function writes the solution in an
array sol if the function returns True.
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def dancing_links(size_universe, sets):
header = Cell(None, None, 0, None) # building the cell structure
col = []
for j in range(size_universe):

col.append(Cell(header, None, 0, None))
for i, _ in enumerate(sets):

row = None
for j in sets[i]:

col[j].S += 1 # one more entry in this column
row = Cell(row, col[j], i, col[j])

sol = []
if solve(header, sol):

return sol
return None

def solve(header, sol):
if header.R == header: # the instance is empty => solution found

return True
c = None # find the least covered column
j = header.R
while j != header:

if c is None or j.S < c.S:
c = j

j = j.R
cover(c) # cover this column
r = c.D # try every row
while r != c:

sol.append(r.S)
j = r.R # cover elements in set r
while j != r:

cover(j.C)
j = j.R

if solve(header, sol):
return True

j = r.L # uncover
while j != r:

uncover(j.C)
j = j.L

sol.pop()
r = r.D

uncover(c)
return False

15.3 Problems

Sudoku [spoj:SUDOKU]
Making Jumps [spoj:MKJUMPS]
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15.4 Sudoku

Several naive methods succeed in efficiently solving classic instances of Sudoku (see
Figure 15.6). However, for Sudoku grids of size 16× 16, the dancing links algorithm
seems to be the right tool.

7 2
5 9

3 8
4 5

3 8
2 3

2 5
6 3

1 9

Figure 15.6 A Sudoku grid. The goal is to fill in the free squares so that each column, each row
and each 3× 3 block contains all the integers from 1 to 9.

Modelisation
How can we model the problem of Sudoku as an exact cover problem? There are
four types of constraints. Each cell must contain a value. In each row of the Sudoku
grid, every value must appear exactly once. The same holds for the columns and the
blocks. There are thus four types of elements in the universe: the couples row-column,
the couples row-value, the couples column-value and the couples block-value. These
elements constitute the universe U of the instance 〈U,S〉 of the exact cover problem.

Then, the sets of S consist of assignments: triplets row-column-value, with each
assignment covering exactly four elements of the universe.

The pleasant aspect of this representation is that it makes abstraction of the notions
of rows, columns, blocks or values, giving a problem much easier to manipulate.

Sudoku grids typically come filled with a few predefined values. How can those be
encoded? Our method consists of adding a new element e to the universe and a new
set A to S that is the unique set containing e. Every solution must then include A. It
then suffices to place in A all elements of the universe already covered by the initial
assignments.

Encoding
The sets of the instance 〈U,S〉 of the exact cover correspond to assignments, and
our implementation of the dancing links algorithm returns the solution in the form
of an array with the indices of the selected sets. Hence, to recover the assignments
corresponding to the indices, we must specify an encoding. We chose to encode the
assignment of a value v to the square in row r and column c by the integer 81r+9c+v
(replace the coefficients by 256 and 16 for the case of a 16× 16 Sudoku).

Similarly, the elements of the universe are encoded by integers. For example, the
couple row-column r,c is encoded by 9r + c, the couple row-value r,v by 81+ 9r + v
and so on.
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N = 3 # global constants
N2 = N * N
N4 = N2 * N2

# sets
def assignment(r, c, v): return r * N4 + c * N2 + v

def row(a): return a // N4

def col(a): return (a // N2) % N2

def val(a): return a % N2

def blk(a): return (row(a) // N) * N + col(a) // N
# elements to cover
def rc(a): return row(a) * N2 + col(a)

def rv(a): return row(a) * N2 + val(a) + N4

def cv(a): return col(a) * N2 + val(a) + 2 * N4

def bv(a): return blk(a) * N2 + val(a) + 3 * N4

def sudoku(G):
global N, N2, N4
if len(G) == 16: # for a 16 x 16 sudoku grid

N, N2, N4 = 4, 16, 256
e = N * N4
universe = e + 1
S = [[rc(a), rv(a), cv(a), bv(a)] for a in range(N4 * N2)]
A = [e]
for r in range(N2):

for c in range(N2):
if G[r][c] != 0:

a = assignment(r, c, G[r][c] - 1)
A += S[a]

sol = dancing_links(universe, S + [A])
if sol:

for a in sol:
if a < len(S):

G[row(a)][col(a)] = val(a) + 1
return True

return False
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Problems
Easy sudoku [spoj:EASUDOKU]
Sudoku [spoj:SUDOKU]

15.5 Enumeration of Permutations

Applications
Certain problems, lacking structure, require a naive solution by testing one by one
each element in the space of potential solutions. It is thus sometimes necessary to
explore all permutations of a given array.

Example: Word Additions
Consider enigmas of the form

S E N D
+ M O R E
= M O N E Y

where a distinct digit has to be assigned to each letter, in such a way that each word
becomes a number without leading zero and the equation of the addition is correct.
To solve this problem by naive enumeration, it suffices to construct an array tab =
“@@DEMNORSY” composed of the letters of the problem, completed with enough @ as
necessary to be of size 10. Then, there is a correspondence between the permutations
of this array and the assignments of distinct digits to the letters, by assigning to each
letter its rank in the array.

The interesting part is then the enumeration of all permutations of an array, and this
is the subject of this section.

Definition
Given an array t of n elements, we want to determine the next permutation of t , in
lexicographical order, or to signal that t is already maximal.

Key Observation
To permute t into the next lexicographical permutation, we need to preserve the
longest possible prefix and exchange only elements in the suffix.

Algorithm in Linear Time
The algorithm consists of three steps. The first is to find the largest index p—called
the pivot—such that t[p] < t[p + 1]. The idea is that the suffix of t begn inning at
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p + 1 is a non-increasing sequence, and hence already lexicographically maximal.
Hence, if such a pivot does not exist, the algorithm can terminate and announce the0.
maximality of t .

Then, clearly t[p] must be augmented, but in a minimal fashion. We thus seek
within the suffix an index s such that t[s] is minimal and t[s] > t[p]. As p + 1 is a
candidate, such an index always exists. By swapping t[p] with t[s], we obtain an array
that is lexicographically greater than the initial array. Finally, by sorting in increasing
order the suffix of t starting at p + 1, we obtain the smallest permutation of t among
those with prefix t[1 . . . p].

initial array 0 2 1 6 5 2 1
choice of pivot 0 2 [1] 6 5 2 1
swap 0 2 [2] 6 5 [1] 1
reverse suffix 0 2 2 [1 1 5 6]
final array 0 2 2 1 1 5 6

Figure 15.7 Computation of the next permutation.

Sorting the suffix in increasing order essentially comes down to reversing its ele-
ments since, initially, it was in decreasing order.

def next_permutation(tab):
n = len(tab)
pivot = None # find pivot
for i in range(n - 1):

if tab[i] < tab[i + 1]:
pivot = i

if pivot is None: # tab is already the last perm.
return False

for i in range(pivot + 1, n): # find the element to swap
if tab[i] > tab[pivot]:

swap = i
tab[swap], tab[pivot] = tab[pivot], tab[swap]
i = pivot + 1
j = n - 1 # invert suffix
while i < j:

tab[i], tab[j] = tab[j], tab[i]
i += 1
j -= 1

return True
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The solution to the problem of word additions can then be coded as follows.

def convert(word, ass):
retval = 0
for x in word:

retval = 10 * retval + ass[x]
return retval

def solve_word_addition(S): # returns number of solutions
n = len(S)
letters = sorted(list(set(’’.join(S))))
not_zero = ’’ # letters that cannot be 0
for word in S:

not_zero += word[0]
tab = [’@’] * (10 - len(letters)) + letters # minimal lex permutation
count = 0
while True:

ass = {tab[i]: i for i in range(10)} # dict = associative array
if tab[0] not in not_zero:

difference = -convert(S[n - 1], ass) # do the addition
for word in S[:n - 1]:

difference += convert(word, ass)
if difference == 0: # does it add up?

count += 1
if not next_permutation(tab):

break
return count

Variant: Enumeration of Combinations and Permutations
A simple trick to enumerate the combinations of n elements taken k at a time, i.e. the
subsets of {1, . . . ,n} with k elements, consists of iterating over the permutations of
the binary mask ‘k taken, n − k not taken’, i.e. a list containing n − k elements ‘0’
followed by k elements ‘1’. Then, this mask allows us to select the elements forming
the subset.

To enumerate the permutations of n taken k at a time, it suffices to enumerate the
permutations of combinations of n taken k at a time, which comes down to using two
nested iterations of next_permutation. This provides another solution to the problem
of word additions, by selecting the permutations of k letters among 10 where k is the
number of distinct letters.

We will next tackle a technique, already mentioned in Section 1.6.6 on page 34, to
more cleverly iterate over the subsets of a set of n elements, in order to solve a great
variety of problems of dynamic programming.

Problems
The Next Permutation [spoj:NEXT]
Great Swerc [spoj:SWERC14A]
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15.6 Le Compte est Bon

This problem originated in a television game show ‘Des chiffres et des lettres’, broad-
cast in France since 1972. The UK version was known as ‘Countdown’ (1982).

Input
Integers x0, . . . ,xn−1 and b for n quite small, say n ≤ 20.

Output
An arithmetical expression as close as possible to b, using each of the integers at
most once, and using the operations +, -, *, / as often as necessary. Subtraction is
allowed only if its result is positive, and division is allowed only if the result is without
a remainder.

Algorithm
The algorithm uses exhaustive search and dynamic programming. In a dictionary E,
we associate2 with S ⊆ {0, . . . ,n − 1} all the values obtained by using each input xi

for i ∈ S at most once. More precisely, E[S] is in its turn a dictionary associating each
obtained value with the corresponding expression.

For example, for x = (3,4,1,8) and S = {0,1}, the dictionary E[S] contains the
pairs composed of a key x and a value e, where e is an expression formed from the
inputs x0 = 3,x1 = 4 and x the value of e. Hence, E[s] contains the mapping pairs
1 �→ 4− 3,3 �→ 3,4 �→ 4,7 �→ 3+ 4,12 �→ 3 ∗ 4.

To compute E[S], we loop over all of the partitions of S into two non-empty sets L

and R. For each value vL in E[L] obtained by an expression eL and each value vR in
E[R] obtained by an expression eR , we can form new values to be stored in E[S]. In
particular, vL + vR is attained by the expression eL + eR .

The complexity in the worst case is worse than exponential and is delicate to
analyse. First of all, we must count the number of binary trees with at most n

leaves, and then multiply by the number of possibilities to assign these operations
to internal nodes of the trees. Nonetheless, with the restrictions on subtraction and
division, in practice for values of n in the tens, the observed complexity remains
acceptable.

Implementation Details
Particular attention must be paid to the order in which the sets S are processed. By
respecting the increasing order of their size, we can ensure that the sets E[L] and
E[R] have already been determined.

2 With the exception of S = ∅, which is ignored.
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def arithm_expr_target(x, target):
n = len(x)
expr = [{} for _ in range(1 << n)]
# expr[S][val]
# = string solely composed of values in set S that evaluates to val
for i in range(n):

expr[1 << i] = {x[i]: str(x[i])} # store singletons
all_ = (1 << n) - 1
for S in range(3, all_ + 1): # 3: first num that isn’t a power of 2

if expr[S] != {}:
continue # in that case S is a power of 2

for L in range(1, S): # decompose set S into non-empty sets L, R
if L & S == L:

R = S ^ L
for vL in expr[L]: # combine expressions from L

for vR in expr[R]: # with expressions from R
eL = expr[L][vL]
eR = expr[R][vR]
expr[S][vL] = eL
if vL > vR: # difference cannot become negative

expr[S][vL - vR] = "(%s-%s)" % (eL, eR)
if L < R: # break symmetry

expr[S][vL + vR] = "(%s+%s)" % (eL, eR)
expr[S][vL * vR] = "(%s*%s)" % (eL, eR)

if vR != 0 and vL % vR == 0: # only integer div
expr[S][vL // vR] = "(%s/%s)" % (eL, eR)

# look for the closest expression from the target
for dist in range(target + 1):

for sign in [-1, +1]:
val = target + sign * dist
if val in expr[all_]:

return "%s=%i" % (expr[all_][val], val)
# never reaches here if x contains integers between 0 and target
pass
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In conclusion, here a few final remarks before we let you loose into the wilderness.

16.1 Combine Algorithms to Solve a Problem

At times, the problem may require you to find an optimal value. Can this value be
found by dichotomy? If it lies between 0 and N and if the condition verifies a certain
property, this adds only a factor log N to the complexity. This is why it is always prof-
itable to know how to efficiently code a binary search, see Section 1.6.7 on page 35.
Try your skills on this problem, one of the most difficult:

• It can be arranged [kattis:itcanbearranged].

Do you have to count the number of subsequences, or some other combinatorial
structure, modulo some large prime number? Then, a recurrence relation by dynamic
programming can be combined with replacing every division by a multiplication with
the inverse modulo p, see Section 14 on page 214.

Is a greedy algorithm sufficient, or are we faced with a problem of dynamic
programming? What is the recurrence? Is the recursive structure of the problem at
hand a special case of some known problem? It is only by solving lots and lots of
problems that you can build and hone these reflexes.

Finally, the size of the instances can sometimes provide a clue as to the expected
complexity, see the table in Section 1.4 on page 18.

16.2 For Further Reading

Here is a selection of works completing the subjects treated in this book.

• An essential reference for fundamental algorithms is the substantial Introduction to
Algorithms by T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, MIT Press,
3rd ed., 2009.

• For a variety of more specialised algorithms, see Encyclopedia of Algorithms, a
collective work edited by Ming-Yang Kao, Springer Verlag, 2nd ed., 2016.



246 Conclusion

• Flow algorithms are studied from top to bottom in Network Flows: Theory, Algo-
rithms, and Applications by R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Pearson,
2013.

• A good introduction to algorithms for problems in geometry is Computational
Geometry: Algorithms and Applications by M. de Berg, O. Cheung, M. van Kreveld
and M. Overmars, Springer Verlag 2008.

• If you would like to learn more about tricky manipulations with the binary repre-
sentation of integers, the following is a delightful reference: Hacker’s Delight by
Henry S. Warren, Jr, Addison-Wesley, 2013.

• A very good introduction to programming in Python is Think Python: How to Think
Like a Computer Scientist by Allen Downey, O’Reilly Media, 2015.

• Other highly appreciated books include Python Essential Reference by David
M. Beazley, Pearson Education, 2009 and Python Cookbook by Brian K. Jones,
O’Reilly Media, 2013.

• Two texts more adapted to the preparation for programming contests are Com-
petitive Programming by Steven and Felix Halim, Lulu, 2013 and The Algorithm
Design Manual by Steven S. Skiena, Springer Verlag, 2009.

Throughout this work, the references point to the bibliography at the end of the
book. It includes books but also research articles, which are in general less accessible
and destined for a public of specialists. Many of these articles can be accessed freely
on the Internet, or found in a university Computer Science library.

16.3 Rendez-vous on tryalgo.org

This book is accompanied by a website, tryalgo.org, where the code of all the Python
programs described here can be found, as well as test data, training exercises and
solutions that, of course, must not be read before having attempted the problems. The
package tryalgo is available on GitHub and PyPI under the MIT licence, and can be
installed under Python 2 or 3 via pip install tryalgo.

>>> import tryalgo
>>> help(tryalgo) # for the list of modules
>>> help(tryalgo.arithm) # for a particular module

Happy hacking!



Debugging tool

If you are stymied when trying to solve a problem, speak to this rubber duck. Explain
to it precisely and in detail your approach, go over and comment line-by-line your
code, and you are guaranteed to find the mistake.
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via k-sum, 187

Google Code Jam, ix, 2, 3
Graham, 190
Graph, 88

bipartite, 138
directed acyclic (DAG), 62, 167
disconnection, 96
implicit, 90
level, 159
residual, 156

Greatest common divisor, 214
Greedy algorithm, 30, 73, 103, 153, 172, 179

non-optimal, 184
Grid, 62, 92, 133, 201, 204

Hash function, 20
rolling, 56

Hash table, see Dictionary
Heap, 23, 172
Hierholzer, 113
Histogram, 202
Huffman coding, 172
Hungarian algorithm, see Kuhn-Munkres

I/O, see Input-output
ICPC, ix, 2, 3, 5
icpcarchive, 4
Immutable, 6
Infinity, 10
Input-output, 13
Instance, 1
Intervals, 82

intersection, 30
point cover, 85
tree, 82
union, 85

Inverse modulo p, 214
Iterator, 9, 81

k-sum, 187
Kadane, 75
Karp, 117
kattis, 4
Knapsack, 182
Knuth, 231
Knuth-Morris-Pratt, 49
Kőnig, 142
Kosaraju, 108
Kruskal, 179
Kuhn-Munkres, 145

Laser, 227
Left rotation, 189
Levenshtein, 63
List, 12

adjacency, 88
comprehension, 8
doubly linked, 231

Longest palindrome, 59
Longest path, 135

in a tree, 178
Lowest common ancestor, 174
@LRU_cache, 33

Making change, 184
Manacher, 59
map, 14
Markov chain, 221
Matching, 138

complete bipartite graph, 31
maximal-weight perfect, 145
maximum bipartite, 139
minimax, 151
planar without crossings, 151
stable marriages, 153

Matousek-Lo-Steiger, 152
Matrix

adjacency, 88
multiplication, 216, 225

Maximum flow, 155
Dinic, 159
Edmonds-Karp, 158
Ford-Fulkerson, 155

Maximum matching, 227
Memoization, 33, 62
Merge sorted lists, 73
Minimal scalar product, 31
Minimum cut

planar, 163
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Minimum weight spanning tree
Prim, 181

Mirror, 227

NP-complete, 17
NP-difficult, 17

Orientation of 3 points, 189
Output format, 16

Palindrome, 52, 59
Parenthesization, 225
Partial order, 167
Partition, 26

2-partition, 186
3-partition, 35

Pascal’s triangle, 215
Path

alternating, 140
augmenting, 140, 156

Patricia trie, 48
Pattern matching

Knuth-Morris-Pratt, 48
naive, 48
Rabin-Karp, 56

Period, 54
Permutation, 240, 242
Pick, 194
Pigeonhole sort, 29
Points

closest, 195
poj, 4
Polygon, 193

points on the boundary, 194
rectilinear, 198

Polynomial, 17
Power of a word, 54
Prim, 181
Prime numbers, 217
Primitive, 54
Principle of optimality, 124
Priority queue, 128, 181
Probabilistic algorithm, 15, 195
Prologin, ix, 3
prologin, 4
Python, 5

Query, 77, 82, 174, 205
Queue, 21

double-ended, 21, 125, 126
priority, 22, 128

Rabin-Karp, 56
Random walk, 221

Range, 72
cover query, 209
duplicates, 74
maximum sum, 75
minimum, 199
minimum query, 75, 176
query of the sum, 77
sum, 74
weighted sum query, 209

Rectangle, 200
disjoint union, 212
maximal in a grid, 204
maximal in a histogram, 202
union, 205

Rectilinear, 198, 200
Reduction, 17
Reductions

between matchings and flows, 165
Relaxation, 130, 132
Request, 26

Satisfiability, 17
2-SAT, 110
3-SAT, 17
SAT, 17

Scalar product, 31
Search

binary (dichotomic), 35
boundary of a word, 49
breadth-first, 93
depth-first, 91
exhaustive, 227
for a subset, 185
for duplicates, 74
patterns, 48, 56
substring, 52
ternary (trichotomic), 36

Segment tree, 75, 77, 176, 205,
209

Sets
representation by integers, 34

Shortest path, 124
all pairs, 132
arbitrary weights, 130
Bellman-Ford, 130
Dijkstra, 127
directed acyclic graph, 135
graph with non-negative weights,

125
graph with weights {0,1}, 126
in a grid, 62, 133
non-weighted graph, 93
with non-negative weights, 127

Sieve
Eratosthenes, 217
Gries-Misra, 217
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Sliding window, 56, 80
slpc, 4
Sort

pigeonhole, 29
Sorting, 29
Spell checking, 46
spoj, 4
Square

maximal, 201
Stable marriages, 153
Stack, 20, 92, 202
String

factor, 42
subsequence, 42
substring, 42

Subsequence
longest common, 65
longest common increasing, 70
longest increasing, 68

Subset
partition, 186
sum, 185

Sudoku, 238
Sum

over a range, 74
Sweep line, 30, 62, 85, 190, 198, 202,

205, 212
System of linear equations, 221

T9, 43, 46
Tarjan, 105
Taxi, 168

Theorem
Dilworth, 167
fundamental theorem of arithmetic, 217
ham sandwich (Banach), 152
Kőnig, 142, 167
Max-Flow-Min-Cut, 162
Pick, 194

Topological sort, 102, 135
Tramp steamer problem, 120
Transport problem, 165
Travelling salesman, 120
Tree, 171

(quasi-) perfect, 22
alternating, 146
DFS, 98
exploration, 232
Fenwick, 77
interval, 82
lexicographic, 46
longest path, 178
minimum weight spanning, 179
segment, 77, 199
shortest paths, 93, 128
syntax, 218

Triangulation, 221
Trie, see Tree lexicographic

Union-Find, 26, 96, 136, 179
uva, 4

Width of a partial order, 167
Winning strategy, 70


